Stability of Multisolitons for the Derivative Nonlinear Schrodinger Equation

被引:20
作者
Le Coz, Stefan [1 ,2 ,3 ]
Wu, Yifei [4 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse, UMR5219, F-31062 Toulouse 9, France
[3] IMT, UPS, CNRS, F-31062 Toulouse 9, France
[4] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; MULTI-SOLITARY WAVES; ENERGY SPACE; ASYMPTOTIC STABILITY; SOLITONS; EXISTENCE; SYSTEMS; TRAINS; GKDV; SUM;
D O I
10.1093/imrn/rnx013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Schrodinger equation with derivative cubic nonlinearity admits a family of solitons, which are orbitally stable in the energy space. In this work, we prove the orbital stability of multisolitons configurations in the energy space, under suitable assumptions on the speeds and frequencies of the composing solitons. The main ingredients of the proof are modulation theory, energy coercivity, and monotonicity properties.
引用
收藏
页码:4120 / 4170
页数:51
相关论文
共 55 条
[1]   NUMERICAL SIMULATION OF RESONANT TUNNELING OF FAST SOLITONS FOR THE NONLINEAR SCHRODINGER EQUATION [J].
Abou Salem, Walid K. ;
Liu, Xiao ;
Sulem, Catherine .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) :1637-1649
[2]  
[Anonymous], ARXIV160807659
[3]   Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation [J].
Bellazzini, Jacopo ;
Ghimenti, Marco ;
Le Coz, Stefan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) :1479-1522
[4]   STABILITY IN THE ENERGY SPACE FOR CHAINS OF SOLITONS OF THE ONE-DIMENSIONAL GROSS-PITAEVSKII EQUATION [J].
Bethuel, Fabrice ;
Gravejat, Philippe ;
Smets, Didier .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (01) :19-70
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[7]   Stability of solitary waves for derivative nonlinear Schrodinger equation [J].
Colin, Mathieu ;
Ohta, Masahito .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :753-764
[8]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[9]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[10]   MULTI-EXISTENCE OF MULTI-SOLITONS FOR THE SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION IN ONE DIMENSION [J].
Combet, Vianney .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1961-1993