Processing and properties of carbon nanotubes reinforced aluminum composites

被引:337
作者
Deng, C. F. [1 ]
Wang, D. Z. [1 ]
Zhang, X. X. [1 ]
Li, A. B. [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2007年 / 444卷 / 1-2期
关键词
carbon nanotubes; Al matrix composite; fabrication Al4C3 phased; mechanical properties;
D O I
10.1016/j.msea.2006.08.057
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotubes reinforced aluminum matrix composites were fabricated by isostatic pressing followed hot extrusion techniques. Differential scanning calorimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy has been carried out to examine the reaction condition of nanotubes and aluminum, and to analyze the composites structure. The effects of nanotubes content on mechanical properties of composites were investigated. Experimental results showed that nanotubes are homogeneously distributed in the composites. Some nanotubes act as bridges across cracks, others are pulled-out on fracture surfaces of composites. However, nanotubes react with aluminum and form Al4C3 phases when the temperature is above 656.3 degrees C. The nanotubes content affects significantly mechanical properties of composites. Meanwhile, the 1.0 wt.% nanotube/2024Al composite is found to exhibit the highest tensile strength and Young's modulus. The maximal increments of tensile strength and Young's modulus of the composite, compared with the 2024Al matrix, are 35.7% and 41.3%, respectively. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 145
页数:8
相关论文
共 42 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J].
Cha, SI ;
Kim, KT ;
Arshad, SN ;
Mo, CB ;
Hong, SH .
ADVANCED MATERIALS, 2005, 17 (11) :1377-+
[4]  
CHANG S, 2000, CERAM ENG SCI P, V21, P653
[5]   Carbon nanotubes: opportunities and challenges [J].
Dai, HJ .
SURFACE SCIENCE, 2002, 500 (1-3) :218-241
[6]  
Dong SR, 1999, T NONFERR METAL SOC, V9, P457
[7]   An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes [J].
Dong, SR ;
Tu, JP ;
Zhang, XB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 313 (1-2) :83-87
[8]   Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J].
George, R ;
Kashyap, KT ;
Raw, R ;
Yamdagni, S .
SCRIPTA MATERIALIA, 2005, 53 (10) :1159-1163
[9]   In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials [J].
Hu, XG ;
Wang, T ;
Qu, XH ;
Dong, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (02) :853-857
[10]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58