Adaptation of the transfer function of the Hodgkin-Huxley (HH) neuronal model

被引:2
|
作者
Yu, YG [1 ]
Lee, TS
机构
[1] Carnegie Mellon Univ, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
关键词
adaptation; receptive field; Wiener kernel;
D O I
10.1016/S0925-2312(02)00867-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The transfer functions of sensory neurons are known to adapt to the statistics of the input signals. It is however unclear whether such adaptation arises from the nonlinear dynamics of the neuron or emerges from the collective interaction among neurons embedded in a network. We investigated the Hodgkin-Huxley (HH) neuronal model's response to Gaussian white noise signals of different variances and found that the recovered kernel adapt its preferred temporal frequency and its energy gains according to noise variance. This adaptation is likely a consequence of the cooperative interaction between the noises and the bifurcation dynamics of the neurons. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [21] The extended Granger causality analysis for Hodgkin-Huxley neuronal models
    Cheng, Hong
    Cai, David
    Zhou, Douglas
    CHAOS, 2020, 30 (10)
  • [22] A HODGKIN-HUXLEY MODEL OF THE SLOW CALCIUM CURRENT
    LEMIEUX, DR
    BEAUMONT, J
    ROBERGE, FA
    BIOPHYSICAL JOURNAL, 1993, 64 (02) : A204 - A204
  • [23] ANODAL EXCITATION IN HODGKIN-HUXLEY NERVE MODEL
    FITZHUGH, R
    BIOPHYSICAL JOURNAL, 1976, 16 (03) : 209 - 226
  • [24] A simple parametric representation of the Hodgkin-Huxley model
    Rodriguez-Collado, Alejandro
    Rueda, Cristina
    PLOS ONE, 2021, 16 (07):
  • [25] Crisis of interspike intervals in Hodgkin-Huxley model
    Jin, WY
    Xu, JX
    Wu, Y
    Hong, L
    Wei, YB
    CHAOS SOLITONS & FRACTALS, 2006, 27 (04) : 952 - 958
  • [26] A path integral approach to the Hodgkin-Huxley model
    Baravalle, Roman
    Rosso, Osvaldo A.
    Montani, Fernando
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 986 - 999
  • [27] Analysis and control of the bifurcation of Hodgkin-Huxley model
    Wang, Jiang
    Chen, Liangquan
    Fei, Xianyang
    CHAOS SOLITONS & FRACTALS, 2007, 31 (01) : 247 - 256
  • [28] Bifurcations Features of the Hodgkin-Huxley Neuron Model
    Romanyshyn, Yuriy
    Yelmanov, Sergei
    Vaskiv, Hryhoriy
    Grybyk, Igor
    15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 886 - 889
  • [29] Implementation of Hodgkin-Huxley Neuron Model In FPGAs
    Lu, Mai
    Wang, Jin-Long
    Wen, Jia
    Dong, Xu-Wei
    2016 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2016, : 1115 - 1117
  • [30] Random dynamics of the Hodgkin-Huxley neuron model
    Pakdaman, K.
    Tanabe, S.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 I): : 1 - 050902