The inverse conductivity problem with one measurement: Bounds on the size of the unknown object

被引:62
作者
Alessandrini, G [1 ]
Rosset, E [1 ]
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
关键词
elliptic equations; inverse boundary value problems; nondestructive testing;
D O I
10.1137/S0036139996306468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of determining, within an electrically conducting body Omega of conductivity sigma = 1, an unknown inclusion D, whose conductivity is sigma = k not equal 1, when one pair of current density and voltage measurements from the exterior of Omega is available. We prove upper and lower bounds on the size of the unknown inclusion D. We also consider the case of nonuniform and nonisotropic conductivities in Omega and in D.
引用
收藏
页码:1060 / 1071
页数:12
相关论文
共 21 条
[1]  
AGMON S, 1965, SEM MATH S, P13
[2]   LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ALESSANDRINI, G ;
ISAKOV, V ;
POWELL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3031-3041
[3]  
ALESSANDRINI G, 1989, B UNIONE MAT ITAL, V23, P243
[4]  
Alessandrini G., 1996, Rend. Istit. Mat. Univ. Trieste, V28, P351
[5]   THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT - UNIQUENESS FOR CONVEX POLYHEDRA [J].
BARCELO, B ;
FABES, E ;
SEO, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :183-189
[6]  
BELLOUT H, 1988, ARCH RATION MECH AN, V101, P143, DOI 10.1007/BF00251458
[7]   STABILITY FOR AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
BELLOUT, H ;
FRIEDMAN, A ;
ISAKOV, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (01) :271-296
[8]  
BRYAN K, 1990, COMMUN PART DIFF EQ, V15, P503
[9]  
CHEREDNICHENKO VG, 1982, DIFF EQUAT+, V18, P503
[10]   THE FREE-BOUNDARY OF A FLOW IN A POROUS BODY HEATED FROM ITS BOUNDARY [J].
DIBENEDETTO, E ;
ELLIOTT, CM ;
FRIEDMAN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (09) :879-900