Mobility induces global synchronization of oscillators in periodic extended systems

被引:39
|
作者
Peruani, Fernando [1 ,2 ]
Nicola, Ernesto M. [2 ,3 ]
Morelli, Luis G. [2 ,4 ,5 ]
机构
[1] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] UIB, CSIC, IFISC, Inst Cross Disciplinary Phys & Complex Syst, E-07122 Palma De Mallorca, Spain
[4] UBA, Dept Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina
[5] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
欧洲研究理事会;
关键词
PROMOTES; BIODIVERSITY;
D O I
10.1088/1367-2630/12/9/093029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the synchronization of locally coupled noisy phase oscillators that move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits wavelike states displaying local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical mobility above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by a shift in the relative size of attractor basins associated with wavelike states. Mobility disrupts these states and paves the way for the system to attain global synchronization.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The onset of synchronization in systems of globally coupled chaotic and periodic oscillators
    Ott, E
    So, P
    Barreto, E
    Antonsen, T
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 173 (1-2) : 29 - 51
  • [2] Collective synchronization in spatially extended systems of coupled oscillators with random frequencies
    Hong, H
    Park, H
    Choi, MY
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [3] PERIODIC SYNCHRONIZATION IN A DRIVEN SYSTEM OF COUPLED OSCILLATORS
    CHOI, MY
    KIM, YW
    HONG, DC
    PHYSICAL REVIEW E, 1994, 49 (05): : 3825 - 3832
  • [4] Periodic synchronization and chimera in conformist and contrarian oscillators
    Hong, Hyunsuk
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [5] Synchronization of chaotic oscillators by periodic parametric perturbations
    Astakhov, VV
    Anishchenko, VS
    Kapitaniak, T
    Shabunin, AI
    PHYSICA D-NONLINEAR PHENOMENA, 1997, 109 (1-2) : 11 - 16
  • [6] Periodic phase synchronization in coupled chaotic oscillators
    Kye, WH
    Lee, DS
    Rim, S
    Kim, CM
    Park, YJ
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [7] Robust Global Synchronization of Brockett Oscillators
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (01): : 289 - 298
  • [8] Global stochastic synchronization of chaotic oscillators
    Porfiri, Maurizio
    Fiorilli, Francesca
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 511 - 516
  • [9] The Emergence of Hyperchaos and Synchronization in Networks with Discrete Periodic Oscillators
    Arellano-Delgado, Adrian
    Martha Lopez-Gutierrez, Rosa
    Angel Murillo-Escobar, Miguel
    Cardoza-Avendano, Liliana
    Cruz-Hernandez, Cesar
    ENTROPY, 2017, 19 (08):
  • [10] Comment on "periodic phase synchronization in coupled chaotic oscillators"
    Pazó, D
    Matías, MA
    PHYSICAL REVIEW E, 2006, 73 (03): : 1 - 2