Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings

被引:21
|
作者
Wang, Yan [1 ]
Liang, Jie [1 ]
Gu, Xiaoguang [2 ]
Ling, Dan [1 ]
Yu, Haowen [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
[2] Henan Big Data Ctr, Dept Appl Res, 39 Jinshui East Rd, Zhengzhou 45003, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; residual network; attention mechanism; multi-scale; rolling bearing; SUPPORT VECTOR MACHINE; ADVERSARIAL NETWORK; MODE DECOMPOSITION;
D O I
10.1177/09544062221104598
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rolling bearing fault diagnosis is crucial to improve industrial safety and reliability. In recent years, intelligent fault diagnosis method represented by deep learning (DL) has been receiving increasing attention. In order to ameliorate the full training of the deep network, improve the model accuracy, and perfect the analysis of mechanical vibration signals with huge amount of information, a multi-scale attention mechanism residual network (MSA-ResNet) fault diagnosis method is proposed in this paper. First, an attention mechanism block is introduced to construct a new type of residual block combination. Second, a multi-scale structure is constructed by choosing an appropriate convolution kernel size. Finally, the overall framework of MSA-ResNet is constructed for efficient training and failure pattern recognition. The MSA-ResNet algorithm introduces an attention mechanism in each residual module of the residual network (ResNet), which improves the sensitivity to features. The features of different scales are obtained through the multi-scale convolution kernel, and the multi-scale feature extraction of complex nonlinear mechanical vibration signals is realized. The processing of original vibration signal rarely involves artificial interference, which is more conducive to industrial application of the proposed method. Diagnostic experiments are conducted on bearing datasets from the Case Western Reserve University (CWRU) and the Machinery Failure Prevention Technology (MFPT) to verify the effectiveness of the proposed method. The results illustrating the rolling bearing fault diagnosis method based on MSA-ResNet have advantages in multi-scale feature extraction, noise immunity, and fault classification accuracy.
引用
收藏
页码:10615 / 10629
页数:15
相关论文
共 50 条
  • [1] Fault diagnosis of rolling bearings using an Improved Multi-Scale Convolutional Neural Network with Feature Attention mechanism
    Xu, Zifei
    Li, Chun
    Yang, Yang
    ISA TRANSACTIONS, 2021, 110 : 379 - 393
  • [2] Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis
    Huang, Ya-Jing
    Liao, Ai-Hua
    Hu, Ding-Yu
    Shi, Wei
    Zheng, Shu-Bin
    MEASUREMENT, 2022, 203
  • [3] Dual-path multi-scale attention residual network for fault diagnosis of rolling bearings under complex operating conditions
    Deng, Linfeng
    Zhang, Yuanwen
    Zhao, Cheng
    Wang, Guojun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [4] FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-SCALE ENTROPY AND ENSEMBLED ARTIFICIAL NEURAL NETWORK
    Chen, Fen
    Liu, Quan
    Wei, Qin
    Ting, Deng
    Ting, Yan
    Su Wenqin
    Peng Bingjie
    Zhao, Lei
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [5] Fault diagnosis of rolling bearing based on multi-scale and attention mechanism
    Ding, Xue
    Deng, Aidong
    Li, Jing
    Deng, Minqiang
    Xu, Shuo
    Shi, Yaowei
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (01): : 172 - 178
  • [6] Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network
    Wang, Zhaowei
    Liu, Chuanshuai
    Zhao, Wenxiang
    Song, Xiangjin
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (07): : 65 - 76
  • [7] An Improved Fault Diagnosis Method of Rolling Bearings Based on Multi-Scale Attention CNN
    Deng, Linfeng
    Zhang, Yuanwen
    Shi, Zhifeng
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (04) : 1814 - 1827
  • [8] Multi-scale deep residual shrinkage networks with a hybrid attention mechanism for rolling bearing fault diagnosis
    Zhang, Xinliang
    Wang, Yanqi
    Wei, Shengqiang
    Zhou, Yitian
    Jia, Lijie
    JOURNAL OF INSTRUMENTATION, 2024, 19 (05):
  • [9] Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis
    Hao, Yijia
    Wang, Huan
    Liu, Zhiliang
    Han, Haoran
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [10] Multi-scale residual neural network with enhanced gated recurrent unit for fault diagnosis of rolling bearing
    Liao, Weiqing
    Fu, Wenlong
    Yang, Ke
    Tan, Chao
    Huang, Yuguang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)