Electrolyte Evolution Propelling the Development of Nonlithium Metal-Sulfur Batteries

被引:17
作者
Pan, Yuede [1 ,2 ]
Li, Suli [1 ,2 ]
Yin, Miaomiao [2 ]
Li, Junyi [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Zhuhai Coslight Battery Co Ltd, Zhuhai 519180, Peoples R China
基金
中国博士后科学基金;
关键词
electrolytes; energy storage; metal anodes; metal-sulfur batteries; sulfur cathodes; GEL POLYMER ELECTROLYTE; ELECTROCHEMICAL REDUCTION; LIQUID ELECTROLYTES; CATHODE MATERIALS; LITHIUM; ALUMINUM; PERFORMANCE; NANOCOMPOSITE; DISCHARGE; EFFICIENT;
D O I
10.1002/ente.201900164
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Metal-sulfur batteries with sulfur cathodes and light-weight metal anodes are promising next-generation energy-storage systems for their high specific capacities, high energy densities, high abundance, and potentially low cost of the electroactive materials. In the development of various metal-sulfur batteries, the electrolyte plays a central role. The electrolyte significantly affects the capacity, cycling performance, safety, and rate capability. This article reviews the recent development of the electrolyte technology applied in nonlithium metal-sulfur batteries of Na-S, K-S, Mg-S, and Al-S, in comparison with the Li-S battery electrolytes. The evolution of the electrolyte technology and how it propels the advancement of the rechargeable metal-sulfur batteries are highlighted. Finally, several considerations are given for evaluating the nonlithium metal-sulfur battery electrolytes from a practical point of view.
引用
收藏
页数:16
相关论文
共 128 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[3]   Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution? [J].
Barghamadi, Marzieh ;
Best, Adam S. ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. ;
Musameh, Mustafa ;
Rees, Robert J. ;
Ruether, Thomas .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3902-3920
[4]   Using an AlCl3/Urea Ionic Liquid Analog Electrolyte for Improving the Lifetime of Aluminum-Sulfur Batteries [J].
Bian, Yinghui ;
Li, Yu ;
Yu, Zhichao ;
Chen, Hui ;
Du, Kewen ;
Qiu, Chaochao ;
Zhang, Guoxin ;
Lv, Zichuan ;
Lin, Meng-Chang .
CHEMELECTROCHEM, 2018, 5 (23) :3607-3611
[5]   A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability [J].
Carter, Rachel ;
Oakes, Landon ;
Douglas, Anna ;
Muralidharan, Nitin ;
Cohn, Adam P. ;
Pint, Cary L. .
NANO LETTERS, 2017, 17 (03) :1863-1869
[6]   Boron Clusters as Highly Stable Magnesium-Battery Electrolytes [J].
Carter, Tyler J. ;
Mohtadi, Rana ;
Arthur, Timothy S. ;
Mizuno, Fuminori ;
Zhang, Ruigang ;
Shirai, Soichi ;
Kampf, Jeff W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (12) :3173-3177
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes [J].
Chen, Xiang ;
Li, Hao-Ran ;
Shen, Xin ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (51) :16643-16647
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   A novel non-aqueous aluminum sulfur battery [J].
Cohn, Gil ;
Ma, Lin ;
Archer, Lynden A. .
JOURNAL OF POWER SOURCES, 2015, 283 :416-422