High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth

被引:318
作者
Qiu, Wenda [1 ,2 ]
Li, Yu [1 ]
You, Ao [1 ]
Zhang, Zemin [1 ]
Li, Guangfu [1 ]
Lu, Xihong [2 ]
Tong, Yexiang [2 ]
机构
[1] Guangdong Ind Technol Coll, Dept Environm Engn, Guangzhou 510300, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, MOE, Key Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem,Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
关键词
HIGH-CAPACITY; HIGH-ENERGY; FACILE SYNTHESIS; NANOTUBE ARRAYS; ZINC BATTERY; STORAGE; ULTRAFAST; ANODE; ELECTRODE; GRAPHENE;
D O I
10.1039/c7ta03274a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous Zn-MnO2 batteries have great potential as flexible energy storage devices owing to their low cost, high energy density, safety, and environmental friendliness. However, their development is plagued by the poor cycling stability, and the use of heavy zinc foil as the anode is antithetical to the flexible devices. Herein, we construct a high-performance and stable flexible rechargeable quasi-solid-state Zn-MnO2 battery using MnO2 nanorod arrays and tiny Zn nanoparticles uniformly deposited on N-doped porous carbon cloth as the free-standing cathode and anode, respectively. The 3D porous nitrogen-doped carbon cloth substrate with high electric conductivity and good flexibility serves as an ideal support for guest active materials of MnO2 nanorod arrays and tiny Zn nanoparticles, which can effectively buffer the volume change giving rise to good cycling ability. Significantly, the device is able to deliver a remarkable capacity of 353 mA h g(-1) and good cycling stability (93.6% after 1000 cycles) in an aqueous electrolyte. Moreover, when using PVA/ZnCl2/MnSO4 gel as the electrolyte, the as-fabricated quasi-solid-state Zn-MnO2 battery still achieves a high energy density of 440 W h kg(-1), high power density of 7.9 kW kg(-1) and excellent cycling ability. This work heralds new opportunities in the development of high-performance, low-cost, safe and flexible electronic devices.
引用
收藏
页码:14838 / 14846
页数:9
相关论文
共 65 条
[1]   Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Baboo, Joseph P. ;
Choi, Sun H. ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3609-3620
[2]   Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode [J].
Alfaruqi, Muhammad Hilmy ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Mathew, Vinod ;
Kim, Jaekook .
JOURNAL OF POWER SOURCES, 2015, 288 :320-327
[3]   A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Yang, Hao ;
Fan, Wenjie ;
Huang, Yongchao ;
Fang, Pingping ;
Li, Gaoren ;
Ji, Hongbing ;
Tong, Yexiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3411-3416
[4]   All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode [J].
Balogun, Muhammad-Sadeeq ;
Qiu, Weitao ;
Lyu, Feiyi ;
Luo, Yang ;
Meng, Hui ;
Li, Jiantao ;
Mai, Wenjie ;
Mai, Liqiang ;
Tong, Yexiang .
NANO ENERGY, 2016, 26 :446-455
[5]   Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Li, Cheng ;
Zhai, Teng ;
Liu, Yi ;
Lu, Xihong ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10825-10829
[6]   Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping [J].
Bayatsarmadi, Bita ;
Zheng, Yao ;
Tang, Youhong ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SMALL, 2016, 12 (27) :3703-3711
[7]   Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage [J].
Chai, Zhisheng ;
Zhang, Nannan ;
Sun, Peng ;
Huang, Yi ;
Zhao, Chuanxi ;
Fang, Hong Jin ;
Fan, Xing ;
Mai, Wenjie .
ACS NANO, 2016, 10 (10) :9201-9207
[8]   Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li-O2 batteries [J].
Chen, Sheng ;
Liu, Guoxue ;
Yadegari, Hossein ;
Wang, Haihui ;
Qiao, Shi Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) :2559-2563
[9]   High-power alkaline Zn-MuO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder [J].
Cheng, FY ;
Chen, J ;
Gou, XL ;
Shen, PW .
ADVANCED MATERIALS, 2005, 17 (22) :2753-+
[10]   Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode [J].
Cheng, Jianli ;
Wang, Bin ;
Xin, Huolin L. ;
Kim, Chunjoong ;
Nie, Fude ;
Li, Xiaodong ;
Yang, Guangcheng ;
Huang, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2701-2707