Using Noise and External Knowledge to Enhance Chinese Pre-trained Model

被引:1
作者
Ma, Haoyang [1 ]
Li, Zeyu [2 ]
Guo, Hongyu [3 ]
机构
[1] Natl Univ Def Technol, North China Inst Comp Technol, Beijing, Peoples R China
[2] Commun Univ China, Beijing, Peoples R China
[3] North China Inst Comp Technol, Beijing, Peoples R China
来源
2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI | 2022年
关键词
External Knowledge; Graph neural network; Pre-trained language model;
D O I
10.1109/ICTAI56018.2022.00076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pre-trained language models (PLMs) have the risk of overfitting pre-trained tasks and data in fine-tuning, while Chinese PLMs often ignore external knowledge such as word and sentence to learn representations. Therefore, we propose a Chinese PLM enhancement method using noise and external knowledge (NEK). NEK first adds different uniform noises to the PLM according to the standard deviation of different parameter matrices, so as to obtain the perturbed PLM. In the fine-tuning phase, NEK builds a heterogeneous linguistic graph based on external knowledge. This module adopts a graph-based approach to generalize information of different granularities in Chinese linguistics, and enhances Chinese PLM on this basis. Experimental results show that NEK brings performance improvements to a variety of different Chinese PLMs on six natural language processing tasks on eight benchmark datasets.
引用
收藏
页码:476 / 480
页数:5
相关论文
共 33 条
  • [1] Bruna J, 2014, Arxiv, DOI arXiv:1312.6203
  • [2] Chen J, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P4946
  • [3] Chen SY, 2020, Arxiv, DOI arXiv:2004.12651
  • [4] Shao CC, 2019, Arxiv, DOI arXiv:1806.00920
  • [5] Clinchant S., 2019, arXiv
  • [6] Conneau A, 2018, Arxiv, DOI arXiv:1809.05053
  • [7] Cui YM, 2019, Arxiv, DOI arXiv:1810.07366
  • [8] Cui YM, 2021, Arxiv, DOI [arXiv:1906.08101, 10.1109/TASLP.2021.3124365, 10.48550/arXiv.1906.08101]
  • [9] Diao SZ, 2019, Arxiv, DOI [arXiv:1911.00720, 10.48550/arXiv.1911.00720, DOI 10.48550/ARXIV.1911.00720]
  • [10] Bringing Transparency Design into Practice
    Eiband, Malin
    Schneider, Hanna
    Bilandzic, Mark
    Fazekas-Con, Julian
    Haug, Mareike
    Hussmann, Heinrich
    [J]. IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2018, : 211 - 223