Grain boundary sliding and rotational mechanisms of intragranular deformation at different creep stages of high-purity aluminum polycrystals at various temperatures and stresses

被引:10
作者
Panin, V. E. [1 ,2 ]
Surikova, N. S. [1 ]
Elsukova, T. F. [1 ]
Vlasov, I. V. [1 ]
Borisyuk, D., V [1 ,2 ]
机构
[1] Inst Strength Phys & Mat Sci SB RAS, Tomsk 634055, Russia
[2] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 733卷
基金
俄罗斯基础研究基金会;
关键词
Creep; High-purity aluminum polycrystals; Grain boundary sliding; Plasticity methods; Grains and interfaces; Fracture; PLASTIC-DEFORMATION; PHYSICAL MESOMECHANICS; DIFFUSIONAL CREEP; DISLOCATION CREEP; DENUDED ZONES; SOLIDS; FRACTURE;
D O I
10.1016/j.msea.2018.07.038
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the paper we show that grain boundary sliding dominates in the creep of A999 aluminum polycrystals and is accommodated by rotation modes of intragranular deformation. Accommodation mechanisms strongly depend on the applied stress a and creep temperature T. At low sigma and T, accommodation occurs by dislocation glide and mesoscale fragmentation. At high sigma and T, there appears lattice curvature, which causes the development of shear bands, multiscale fragmentation, and formation of a quasi-neck with nanosized subgrains and plastic microrotations. Noncrystallographic shears in their subboundaries propagate in local lattice curvature zones under tau(max) by the plastic distortion mechanism.
引用
收藏
页码:276 / 284
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2018, HDB MECH MAT
[2]   GRAIN-BOUNDARY SLIDING AND ITS ACCOMMODATION DURING CREEP AND SUPERPLASTICITY [J].
GIFKINS, RC .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1976, 7 (08) :1225-1232
[3]   Bifurcational Behavior of Potential Energy in a Particle System [J].
Guzev, M. A. ;
Dmitriev, A. A. .
PHYSICAL MESOMECHANICS, 2013, 16 (04) :287-293
[4]  
Kassner M. E., 2015, FUNDAMENTALS CREEP M, DOI [10.1016/C2012-0-06071-1, DOI 10.1016/C2012-0-06071-1]
[5]   Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel [J].
Lohmiller, Jochen ;
Grewer, Manuel ;
Braun, Christian ;
Kobler, Aaron ;
Kuebel, Christian ;
Schueler, Kerstin ;
Honkimaeki, Veijo ;
Hahn, Horst ;
Kraft, Oliver ;
Birringer, Rainer ;
Gruber, Patric A. .
ACTA MATERIALIA, 2014, 65 :295-307
[6]   Grain boundary sliding induced by lattice dislocation activity during ambient temperature creep in h.c.p. metals [J].
Matsunaga, T. ;
Kameyama, T. ;
Sato, E. .
DISLOCATIONS 2008, 2009, 3
[7]   Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals [J].
Matsunaga, Tetsuya ;
Kameyama, Tatsuya ;
Ueda, Shouji ;
Sato, Eiichi .
PHILOSOPHICAL MAGAZINE, 2010, 90 (30) :4041-4054
[8]   Shear bands as translation-rotation modes of plastic deformation in solids under alternate bending [J].
Panin, V. E. ;
Egorushkin, V. E. ;
Surikova, N. S. ;
Pochivalov, Yu I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 :451-460
[9]   Plastic distortion as a fundamental mechanism in nonlinear mesomechanics of plastic deformation and fracture [J].
Panin, V. E. ;
Egorushkin, V. E. ;
Panin, A. V. ;
Chernyavskii, A. G. .
PHYSICAL MESOMECHANICS, 2016, 19 (03) :255-268
[10]   Basic Physical Mesomechanics of Plastic Deformation and Fracture of Solids as Hierarchically Organized Nonlinear Systems [J].
Panin, V. E. ;
Egorushkin, V. E. .
PHYSICAL MESOMECHANICS, 2015, 18 (04) :377-390