A phase-fitting, first and second derivatives phase-fitting singularly P-stable economical two-step method for problems in chemistry

被引:14
作者
Sun, Bin [1 ,2 ]
Lin, Chia-Liang [2 ,3 ]
Simos, T. E. [4 ,5 ,6 ]
机构
[1] Jingdezhen Ceram Univ, Jingdezhen 333002, Jiangxi, Peoples R China
[2] Huzhou Univ, Huzhou 313000, Zhejiang, Peoples R China
[3] Natl & Kapodistrian Univ Athens, Gen Dept, Euripus Campus, Chalkis 34400, Greece
[4] China Med Univ, Taichung, Taiwan
[5] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Dongtong Rd 705, Neijiang 641100, Peoples R China
[6] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi, Greece
关键词
Phase-lag; Derivative of the phase-lag; Initial value problems; Oscillating solution; Symmetric; Hybrid; Multistep; Schrodinger equation; RUNGE-KUTTA METHODS; INITIAL-VALUE PROBLEMS; ONE-STEP METHODS; EXPONENTIAL-FITTED METHODS; NOUMEROV-TYPE METHOD; NUMEROV-TYPE METHOD; HIGH-ORDER METHOD; NUMERICAL-SOLUTION; NYSTROM METHODS; OBRECHKOFF METHODS;
D O I
10.1007/s10910-022-01361-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A phase-fitting, first and second derivatives phase-fitting method is produced. The new algorithm is singularly P-Stable and belongs to the economic algorithms. The new method is symbolized as PF2DPFN2SPS. It can be used to any problem with periodical and/or oscillating solutions. We chosen to be applied to a well known problem of Quantum Chemistry. The new scheme is an economic one because 5 function evaluations per step are used in order an algebraic order (AOR) of 12 to be achieved.
引用
收藏
页码:1480 / 1504
页数:25
相关论文
共 144 条
[1]  
Alekseenko S.V., 2003, THEORY CONCENTRATED
[2]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[3]  
Atkins P. W., 2011, MOL QUANTUM MECH
[4]   THERMAL SCATTERING OF ATOMS BY HOMONUCLEAR DIATOMIC MOLECULES [J].
BERNSTEIN, RB ;
DALGARNO, A ;
MASSEY, H ;
PERCIVAL, IC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 274 (1356) :427-+
[6]  
Brugnano L., 2010, JNAIAM J. Numer. Anal. Ind. Appl. Math., V5, P17
[7]   Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) :387-398
[8]   Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) :732-744
[9]   Structure preservation of exponentially fitted Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :421-434
[10]   On some new low storage implementations of time advancing Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) :3665-3675