Robustness in sequential discrimination of Markov chains under "Contamination"

被引:0
作者
Kharin, A [1 ]
机构
[1] Belarusian State Univ, BY-220050 Minsk, BELARUS
来源
THEORY AND APPLICATION OF RECENT ROBUST METHODS | 2004年
关键词
robustness; sequential test; Markov chain;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of robustness is considered for sequential hypotheses testing on the parameters of Markov chains. The exact expressions for the conditional error probabilities, and for the conditional expected sequence lengths are obtained. Robustness analysis under "contamination" is performed. Numerical results are given to illustrate the theory.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条
  • [41] EXTREME EVENTS OF MARKOV CHAINS
    Papastathopoulos, I.
    Strokorb, K.
    Tawn, J. A.
    Butler, A.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 134 - 161
  • [42] Markov chains in a field of traps
    Pemantle, R
    Volkov, S
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (02) : 561 - 569
  • [43] On transience conditions for Markov chains
    Foss, SG
    Denisov, DÉ
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) : 364 - 371
  • [44] Fields from Markov chains
    Justesen, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4358 - 4362
  • [45] MARKOV CHAINS AND CREDIT RISK
    Vojtekova, Maria
    [J]. ZNALOSTI PRO TRZNI PRAXI 2013: VEREJNA EKONOMIKA - SOUCASNOST A PERSPEKTIVA: VEREJNA EKONOMIKA SOUCASNOST A PERSPEKTIVA. PUBLIC ECONOMY - PRESENT SITUATION AND FUTURE PROSPECTS, 2013, : 151 - 156
  • [46] Spectral multipliers for Markov chains
    Alexopoulos, GK
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) : 833 - 852
  • [47] A Hoeffding inequality for Markov chains
    Rao, Shravas
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [48] Molecular computing for Markov chains
    Chuan Zhang
    Ziyuan Shen
    Wei Wei
    Jing Zhao
    Zaichen Zhang
    Xiaohu You
    [J]. Natural Computing, 2020, 19 : 593 - 608
  • [49] On Transience Conditions for Markov Chains
    S. G. Foss
    D. È. Denisov
    [J]. Siberian Mathematical Journal, 2001, 42 : 364 - 371
  • [50] Commutation relations and Markov chains
    Jason Fulman
    [J]. Probability Theory and Related Fields, 2009, 144 : 99 - 136