Self-adaptive differential evolution algorithm with discrete mutation control parameters

被引:99
作者
Fan, Qinqin [1 ]
Yan, Xuefeng [1 ]
机构
[1] E China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary computation; Differential evolution algorithm; Discrete mutation parameters; Control parameter adaptation; Mutation strategy adaptation; GLOBAL OPTIMIZATION; POPULATIONS; INFORMATION; ENSEMBLE;
D O I
10.1016/j.eswa.2014.09.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generally, the optimization problem has different relationships (i.e., linear, approximately linear, non-linear, or highly non-linear) with different optimized variables. The choices of control parameters and mutation strategies would directly affect the performance of differential evolution (DE) algorithm in satisfying the evolution requirement of each optimized variable and balancing its exploitation and exploration capabilities. Therefore, a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE) is proposed. In DMPSADE, each variable of each individual has its own mutation control parameter, and each individual has its own crossover control parameter and mutation strategy. DMPSADE was compared with 8 state-of-the-art DE variants and 3 non-DE algorithms by using 25 benchmark functions. The statistical results indicate that the average performance of DMPSADE is better than those of all other competitors. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1551 / 1572
页数:22
相关论文
共 58 条
[1]  
Abbass HA, 2002, IEEE C EVOL COMPUTAT, P831, DOI 10.1109/CEC.2002.1007033
[2]   A modified Artificial Bee Colony algorithm for real-parameter optimization [J].
Akay, Bahriye ;
Karaboga, Dervis .
INFORMATION SCIENCES, 2012, 192 :120-142
[3]   An efficient Differential Evolution based algorithm for solving multi-objective optimization problems [J].
Ali, Musrrat. ;
Siarry, Patrick ;
Pant, Millie. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 217 (02) :404-416
[4]  
Auger A, 2005, IEEE C EVOL COMPUTAT, P1769
[5]   Population size reduction for the differential evolution algorithm [J].
Brest, Janez ;
Maucec, Mirjam Sepesy .
APPLIED INTELLIGENCE, 2008, 29 (03) :228-247
[6]   Self-adaptive differential evolution algorithm in constrained real-parameter optimization [J].
Brest, Janez ;
Zumer, Viljem ;
Maucec, Mirjam Sepesy .
2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, :215-+
[7]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[8]   Differential Evolution With Neighborhood and Direction Information for Numerical Optimization [J].
Cai, Yiqiao ;
Wang, Jiahai .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) :2202-2215
[9]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[10]   MULTIPLE COMPARISONS AMONG MEANS [J].
DUNN, OJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1961, 56 (293) :52-&