Asymptotically regular operators in generalized Morrey spaces

被引:7
作者
Byun, Sun-Sig [1 ]
Softova, Lubomira [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Univ Salerno, Dept Math, I-84084 Fisciano, Italy
关键词
35K20 (primary); 35B65; 35B45; 35R05; 46E30; 35K40 (secondary); CALDERON-ZYGMUND THEORY; ELLIPTIC-EQUATIONS; GRADIENT; COEFFICIENTS; CALCULUS;
D O I
10.1112/blms.12306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain Calderon-Zygmund-type estimates in generalized Morrey spaces Lq,phi(omega) for nonlinear equations of p-Laplacian type. Our result is obtained under minimal regularity assumptions on both the operator and the domain omega. This result allows us to study more general class of nonlinear equations which are asymptotically regular, that is, 'near' enough to some nonlinear operator of p-Laplacian type. As a by-product, we obtain also generalized Holder regularity C0,phi(omega) of the solution under some restrictions on the generalizing function phi.
引用
收藏
页码:64 / 76
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 1986, PURE APPL MATH
[2]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[3]   On the relation between generalized Morrey spaces and measure data problems [J].
Baroni, Paolo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :24-45
[4]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[5]   Elliptic equations with BMO nonlinearity in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2008, 219 (06) :1937-1971
[6]   Optimal W1, p regularity theory for parabolic equations in divergence form [J].
Byun, Sun-Sig .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) :415-428
[7]   GLOBAL GRADIENT ESTIMATES IN WEIGHTED LEBESGUE SPACES FOR PARABOLIC OPERATORS [J].
Byun, Sun-Sig ;
Palagachev, Dian K. ;
Softova, Lubomira G. .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) :67-83
[8]   Global Calderon-Zygmund Theory for Asymptotically Regular Nonlinear Elliptic and Parabolic Equations [J].
Byun, Sun-Sig ;
Oh, Jehan ;
Wang, Lihe .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) :8289-8308
[9]   Gradient estimates in generalized Morrey spaces for parabolic operators [J].
Byun, Sun-Sig ;
Softova, Lubomira G. .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) :1602-1614
[10]   Weighted Lp-estimates for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains [J].
Byun, Sun-Sig ;
Palagachev, Dian K. .
POTENTIAL ANALYSIS, 2014, 41 (01) :51-79