Ideal structure of uniform Roe algebras of coarse spaces

被引:22
作者
Chen, XM [1 ]
Wang, Q
机构
[1] Dong Hua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
uniform Roe algebra; coarse geometry; ideal; controlled truncation;
D O I
10.1016/j.jfa.2003.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-u*(X,E) be the uniform Roe algebra of a coarse space (X,E) with uniformly locally finite coarse structure. By a controlled truncation technique, we show that the controlled propagation operators in an ideal I of C-u*(X,E) are exactly the controlled truncations of elements in I. It follows that the lattice of the ideals of the uniform Roe algebra C-u*(X,E) in which controlled propagation operators are dense, the lattice of the invariant open subsets in the unit space of the groupoid G(X) introduced by Skandalis, Tu and Yu, the lattice of the ideals of the coarse structure E, and the lattice of the ideals of the coarse space X are mutually isomorphic. These lattices also give rise to a type of classification for the ideals of C-u* (X,E). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 16 条
  • [1] Localization algebras and duality
    Chen, XM
    Wang, Q
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 227 - 239
  • [2] Notes on ideals of Roe algebras
    Chen, XM
    Wang, Q
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 437 - 446
  • [3] Guentner E, 2002, TOPOLOGY, V41, P411, DOI 10.1016/S0040-9383(00)00036-7
  • [4] Higson N, 2000, J REINE ANGEW MATH, V519, P143
  • [5] Counterexamples to the Baum-Connes conjecture
    Higson, N
    Lafforgue, V
    Skandalis, G
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 330 - 354
  • [6] C*-algebras and controlled topology
    Higson, N
    Pedersen, EK
    Roe, J
    [J]. K-THEORY, 1997, 11 (03): : 209 - 239
  • [7] HIGSON N, 1995, NOVIKOV CONJECTURES, V2, P227
  • [8] MUHLY PS, 1982, T AM MATH SOC, V274, P1
  • [9] Amenable actions and exactness for discrete groups
    Ozawa, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 691 - 695
  • [10] The coarse Baurn-Connes conjecture and groupoids
    Skandalis, G
    Tu, JL
    Yu, G
    [J]. TOPOLOGY, 2002, 41 (04) : 807 - 834