Randomized double and triple Kaczmarz for solving extended normal equations

被引:1
作者
Du, Kui [1 ,2 ]
Sun, Xiao-Hui [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modelling & High Perform, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended normal equations; Randomized Kaczmarz; Exponential convergence; Tight upper bounds; BLOCK KACZMARZ;
D O I
10.1007/s10092-021-00406-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The randomized Kaczmarz algorithm has received considerable attention recently because of its simplicity, speed, and the ability to approximately solve large-scale linear systems of equations. In this paper we propose randomized double and triple Kaczmarz algorithms to solve extended normal equations of the form A(Tau)Ax = A(Tau)b - c. The proposed algorithms avoid forming A(Tau)A explicitly and work for arbitrary A is an element of R-mxn (full rank or rank-deficient, m >= n or m < n). Tight upper bounds showing exponential convergence in the mean square sense of the proposed algorithms are presented and numerical experiments are given to illustrate the theoretical results.
引用
收藏
页数:13
相关论文
共 21 条
[1]   On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems [J].
Bai, Zhong-Zhi ;
Wu, Wen-Ting .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 :225-250
[2]   On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems [J].
Bai, Zhong-Zhi ;
Wu, Wen-Ting .
APPLIED MATHEMATICS LETTERS, 2018, 83 :21-26
[3]   ON GREEDY RANDOMIZED KACZMARZ METHOD FOR SOLVING LARGE SPARSE LINEAR SYSTEMS [J].
Bai, Zhong-Zhi ;
Wu, Wen-Ting .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A592-A606
[4]   ON ITERATIVE SOLUTION OF THE EXTENDED NORMAL EQUATIONS [J].
Calandra, Henri ;
Gratton, Serge ;
Riccietti, Elisa ;
Vasseur, Xavier .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) :1571-1589
[5]  
Calra H., 2020, OPTIM METHODS SOFTW, DOI [10.1080/10556788.2020.1775828, DOI 10.1080/10556788.2020.1775828]
[6]   Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization [J].
Davis, Timothy A. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[7]   RANDOMIZED EXTENDED AVERAGE BLOCK KACZMARZ FOR SOLVING LEAST SQUARES [J].
Du, Kui ;
Si, Wu-Tao ;
Sun, Xiao-Hui .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) :A3541-A3559
[8]   Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms [J].
Du, Kui .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (03)
[9]  
Fletcher R., 1972, Conference on numerical methods for non-linear optimization, P371
[10]   Randomized Methods for Linear Constraints: Convergence Rates and Conditioning [J].
Leventhal, D. ;
Lewis, A. S. .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (03) :641-654