Properties of equilibrium states for geodesic flows over manifolds without focal points

被引:5
作者
Chen, Dong [1 ]
Kao, Lien-Yung [2 ]
Park, Kiho [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Equilibrium states; Manifolds without focal points; Non-uniform hyperbolicity;
D O I
10.1016/j.aim.2021.107564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for closed rank 1 manifolds without focal points the equilibrium states are unique for Holder potentials satisfying the pressure gap condition. In addition, we provide a criterion for a continuous potential to satisfy the pressure gap condition. Moreover, we derive several ergodic properties of the unique equilibrium states including the equidistribution and the K-property. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 32 条
[21]  
Katok A., 1982, ERGOD THEOR DYN SYST, V2, P339
[22]   The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds [J].
Knieper, G .
ANNALS OF MATHEMATICS, 1998, 148 (01) :291-314
[23]  
Ledrappier F., 1977, Dynamical Systems, V50, P251
[24]   ON THE PATTERSON-SULLIVAN MEASURE FOR GEODESIC FLOWS ON RANK 1 MANIFOLDS WITHOUT FOCAL POINTS [J].
Liu, Fei ;
Wang, Fang ;
Wu, Weisheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) :1517-1554
[25]   Entropy-expansiveness of Geodesic Flows on Closed Manifolds without Conjugate Points [J].
Liu, Fei ;
Wang, Fang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (04) :507-520
[26]  
OSullivan JJ., 1976, J DIFFER GEOM, V11, P321
[27]  
PARRY W, 1988, LECT NOTES MATH, V1342, P617
[28]  
PARRY W, 1990, ASTERISQUE, P9
[29]  
Pesin, 1977, IZV AKAD NAUK SSSR M, V41, P1252
[30]  
Thompson D.J., 2019, ARXIV PREPRINT ARXIV