Properties of equilibrium states for geodesic flows over manifolds without focal points

被引:5
作者
Chen, Dong [1 ]
Kao, Lien-Yung [2 ]
Park, Kiho [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Equilibrium states; Manifolds without focal points; Non-uniform hyperbolicity;
D O I
10.1016/j.aim.2021.107564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for closed rank 1 manifolds without focal points the equilibrium states are unique for Holder potentials satisfying the pressure gap condition. In addition, we provide a criterion for a continuous potential to satisfy the pressure gap condition. Moreover, we derive several ergodic properties of the unique equilibrium states including the equidistribution and the K-property. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 32 条
[1]  
[Anonymous], 1997, INTRO MODERN THEORY
[2]   On the mixing property for hyperbolic systems [J].
Babillot, M .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 129 (1) :61-76
[3]   AXIAL ISOMETRIES OF MANIFOLDS OF NONPOSITIVE CURVATURE [J].
BALLMANN, W .
MATHEMATISCHE ANNALEN, 1982, 259 (01) :131-144
[4]  
BOWEN R, 1975, MATH SYST THEORY, V8, P193, DOI 10.1007/BF01762666
[5]   Unique equilibrium states for geodesic flows in nonpositive curvature [J].
Burns, K. ;
Climenhaga, V ;
Fisher, T. ;
Thompson, D. J. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) :1209-1259
[6]  
BURNS K, 1983, ERGOD THEOR DYN SYST, V3, P1
[7]   Unique equilibrium states for geodesic flows over surfaces without focal points [J].
Chen, Dong ;
Kao, Lien-Yung ;
Park, Kiho .
NONLINEARITY, 2020, 33 (03) :1118-1155
[8]   Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points [J].
Climenhaga, Vaughn ;
Knieper, Gerhard ;
War, Khadim .
ADVANCES IN MATHEMATICS, 2021, 376
[9]   Equilibrium states for Mane diffeomorphisms [J].
Climenhaga, Vaughn ;
Fisher, Todd ;
Thompson, Daniel J. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :2433-2455
[10]   Unique equilibrium states for Bonatti-Viana diffeomorphisms [J].
Climenhaga, Vaughn ;
Fisher, Todd ;
Thompson, Daniel J. .
NONLINEARITY, 2018, 31 (06) :2532-2570