New identifying codes in the binary Hamming space

被引:14
作者
Charon, Irene [1 ]
Cohen, Gerard
Hudry, Olivier
Lobstein, Antoine
机构
[1] GET Telecom Paris, F-75634 Paris 13, France
关键词
BOUNDS; IDENTIFICATION;
D O I
10.1016/j.ejc.2009.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(n) be the binary n-cube, or binary Hamming space of dimension n, endowed with the Hamming distance. For r >= 1 and x is an element of F(n), we denote by B(r)(x) the ball of radius r and centre x. A set C subset of F(n) is said to be an r-identifying code if the sets B(r)(x) boolean AND C, x is an element of F(n), are all nonempty and distinct. We give new constructive upper bounds for the minimum cardinalities of r-identifying codes in the Hamming space. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:491 / 501
页数:11
相关论文
共 18 条
  • [1] Blass U, 2000, J COMB DES, V8, P151, DOI 10.1002/(SICI)1520-6610(2000)8:2<151::AID-JCD8>3.0.CO
  • [2] 2-S
  • [3] Bounds on identifying codes
    Blass, U
    Honkala, I
    Litsyn, S
    [J]. DISCRETE MATHEMATICS, 2001, 241 (1-3) : 119 - 128
  • [4] Blass U, 1999, LECT NOTES COMPUT SC, V1719, P142
  • [5] The noising methods: A generalization of some metaheuristics
    Charon, I
    Hudry, O
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 135 (01) : 86 - 101
  • [6] Charon I, 2002, ELECTRON J COMB, V9
  • [7] EXOO G, 1999, COMPUTATIONAL RESULT
  • [8] New bounds on binary identifying codes
    Exoo, Geoffrey
    Laihonen, Tero
    Ranto, Sanna
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) : 2250 - 2263
  • [9] Improved upper bounds on binary identifying codes
    Exoo, Geoffrey
    Laihonen, Tero
    Ranto, Sanna
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (11) : 4255 - 4260
  • [10] Gimbel J., 2001, BMC MED INFORM DECIS, V151, P129