Using the banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities

被引:36
作者
Anh, P [1 ]
Muu, LD
Nguyen, VH
Strodiot, JJ
机构
[1] Post & Telecommun Inst Technol, Hanoi, Vietnam
[2] Inst Math, Hanoi 10000, Vietnam
[3] Fac Univ Notre Dame Paix, Dept Math, Unite Optimisat, B-5000 Namur, Belgium
关键词
multivalued monotone variational inequalities; proximal-point algorithms; Banach contraction-mapping fixed-point methods; convergence rates;
D O I
10.1007/s10957-004-0926-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We apply the Banach contraction-mapping fixed-point principle for solving multivalued strongly monotone variational inequalities. Then, we couple this algorithm with the proximal-point method for solving monotone multivalued variational inequalities. We prove the convergence rate of this algorithm and report some computational results.
引用
收藏
页码:285 / 306
页数:22
相关论文
共 17 条
[1]  
ANH PN, 2004, IN PRESS CONTRACTION
[2]  
Aubin J.-P., 1984, Differential Inclusions
[3]   AUXILIARY PROBLEM PRINCIPLE EXTENDED TO VARIATIONAL-INEQUALITIES [J].
COHEN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) :325-333
[4]   EQUIVALENT DIFFERENTIABLE OPTIMIZATION PROBLEMS AND DESCENT METHODS FOR ASYMMETRIC VARIATIONAL INEQUALITY PROBLEMS [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :99-110
[5]  
Golshtein E. G., 1996, MODIFIED LAGRANGIANS
[6]  
Konnov IV., 2001, Combined relaxation methods for variational inequalities
[8]  
MARTINET R, 1970, RIRO, V4, P154
[9]  
MUU LD, 1983, ACTA MATH VIETNAMICA, V8, P3
[10]  
Nagurney A., 1993, Network Economics: A Variational Inequality Approach