Predicting learning plateau of working memory from whole-brain intrinsic network connectivity patterns

被引:38
作者
Yamashita, Masahiro [1 ,2 ]
Kawato, Mitsuo [1 ,2 ,3 ,4 ]
Imamizu, Hiroshi [1 ,3 ,4 ]
机构
[1] Adv Telecommun Res Inst Int ATR, Brain Informat Commun Res Lab Grp, Kyoto 6190288, Japan
[2] Nara Inst Sci & Technol NAIST, Grad Sch Informat Sci, Nara 6300192, Japan
[3] Natl Inst Informat & Commun Technol, Ctr Informat & Neural Networks CiNet, Osaka 5650871, Japan
[4] Osaka Univ, Osaka 5650871, Japan
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
FUNCTIONAL CONNECTIVITY; ACTIVATION; MODULATION; SELECTION; FMRI; AREA;
D O I
10.1038/srep07622
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Individual learning performance of cognitive function is related to functional connections within 'task-activated' regions where activities increase during the corresponding cognitive tasks. On the other hand, since any brain region is connected with other regions and brain-wide networks, learning is characterized by modulations in connectivity between networks with different functions. Therefore, we hypothesized that learning performance is determined by functional connections among intrinsic networks that include both task-activated and less-activated networks. Subjects underwent resting-state functional MRI and a short period of training (80-90 min) in a working memory task on separate days. We calculated functional connectivity patterns of whole-brain intrinsic networks and examined whether a sparse linear regression model predicts a performance plateau from the individual patterns. The model resulted in highly accurate predictions (R-2 = 0.73, p = 0.003). Positive connections within task-activated networks, including the left fronto-parietal network, accounted for nearly half (48%) of the contribution ratio to the prediction. Moreover, consistent with our hypothesis, connections of the task-activated networks with less-activated networks showed a comparable contribution (44%). Our findings suggest that learning performance is potentially constrained by system-level interactions within task-activated networks as well as those between task-activated and less-activated networks.
引用
收藏
页数:8
相关论文
共 44 条
  • [1] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [2] NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia
    Anticevic, Alan
    Gancsos, Mark
    Murray, John D.
    Repovs, Grega
    Driesen, Naomi R.
    Ennis, Debra J.
    Niciu, Mark J.
    Morgan, Peter T.
    Surti, Toral S.
    Bloch, Michael H.
    Ramani, Ramachandran
    Smith, Mark A.
    Wang, Xiao-Jing
    Krystal, John H.
    Corlett, Philip R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (41) : 16720 - 16725
  • [3] Individual variability in functional connectivity predicts performance of a perceptual task
    Baldassarre, Antonello
    Lewis, Christopher M.
    Committeri, Giorgia
    Snyder, Abraham Z.
    Romani, Gian Luca
    Corbetta, Maurizio
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (09) : 3516 - 3521
  • [4] Dynamic reconfiguration of human brain networks during learning
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Porter, Mason A.
    Mucha, Peter J.
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) : 7641 - 7646
  • [5] Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence
    Cole, Michael W.
    Yarkoni, Tal
    Repovs, Grega
    Anticevic, Alan
    Braver, Todd S.
    [J]. JOURNAL OF NEUROSCIENCE, 2012, 32 (26) : 8988 - 8999
  • [6] Control of goal-directed and stimulus-driven attention in the brain
    Corbetta, M
    Shulman, GL
    [J]. NATURE REVIEWS NEUROSCIENCE, 2002, 3 (03) : 201 - 215
  • [7] The unique role of the visual word form area in reading
    Dehaene, Stanislas
    Cohen, Laurent
    [J]. TRENDS IN COGNITIVE SCIENCES, 2011, 15 (06) : 254 - 262
  • [8] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361
  • [9] Scale-free brain functional networks -: art. no. 018102
    Eguíluz, VM
    Chialvo, DR
    Cecchi, GA
    Baliki, M
    Apkarian, AV
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (01)
  • [10] A method to characterize the learning curve for performance of a fundamental laparoscopic simulator task: Defining "learning plateau" and "learning rate"
    Feldman, Liane S.
    Cao, Jiguo
    Andalib, Amin
    Fraser, Shannon
    Fried, Gerald M.
    [J]. SURGERY, 2009, 146 (02) : 381 - 386