Stress Relaxation and Composition of Hydrazone-Crosslinked Hybrid Biopolymer-Synthetic Hydrogels Determine Spreading and Secretory Properties of MSCs

被引:35
作者
Borelli, Alexandra N. [1 ,2 ]
Young, Mark W. [1 ,2 ]
Kirkpatrick, Bruce E. [1 ,2 ,3 ]
Jaeschke, Matthew W. [1 ,2 ]
Mellett, Sarah [1 ]
Porter, Seth [1 ]
Blatchley, Michael R. [1 ,2 ]
Rao, Varsha V. [1 ,2 ]
Sridhar, Balaji V. [4 ]
Anseth, Kristi S. [1 ,2 ]
机构
[1] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80303 USA
[2] Univ Colorado Boulder, BioFrontiers Inst, Boulder, CO 80303 USA
[3] Univ Colorado Anschutz Med Campus, Med Scientist Training Program, Aurora, CO 80045 USA
[4] Univ Colorado, Dept Phys Med & Rehabil, Aurora, CO 80231 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
hydrogels; mesenchymal stromal cells; stress relaxation; CELL; NETWORKS;
D O I
10.1002/adhm.202200393
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The extracellular matrix plays a critical role in mechanosensing and thereby influences the secretory properties of bone-marrow-derived mesenchymal stem/stromal cells (MSCs). As a result, interest has grown in the development of biomaterials with tunable properties for the expansion and delivery of MSCs that are used in cell-based therapies. Herein, stress-relaxing hydrogels are synthesized as hybrid networks containing both biopolymer and synthetic macromer components. Hyaluronic acid is functionalized with either aldehyde or hydrazide groups to form covalent adaptable hydrazone networks, which are stabilized by poly(ethylene glycol) functionalized with bicyclononyne and heterobifunctional small molecule crosslinkers containing azide and benzaldehyde moieties. Tuning the composition of these gels allows for controlled variation in the characteristic timescale for stress relaxation and the amount of stress relaxed. Over this compositional space, MSCs are observed to spread in formulations with higher degrees of adaptability, with aspect ratios of 1.60 +/- 0.18, and YAP nuclear:cytoplasm ratios of 6.5 +/- 1.3. Finally, a maximum MSC pericellular protein thickness of 1.45 +/- 0.38 mu m occurred in highly stress-relaxing gels, compared to 1.05 +/- 0.25 mu m in non-adaptable controls. Collectively, this study contributes a new understanding of the role of compositionally defined stress relaxation on MSCs mechanosensing and secretion.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange [J].
Brown, Tobin E. ;
Carberry, Benjamin J. ;
Worrell, Brady T. ;
Dudaryeva, Oksana Y. ;
McBride, Matthew K. ;
Bowman, Christopher N. ;
Anseth, Kristi S. .
BIOMATERIALS, 2018, 178 :496-503
[2]   Amplified Photodegradation of Cell-Laden Hydrogels via an Addition-Fragmentation Chain Transfer Reaction [J].
Brown, Tobin E. ;
Marozas, Ian A. ;
Anseth, Kristi S. .
ADVANCED MATERIALS, 2017, 29 (11)
[3]   Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments [J].
Caliari, Steven R. ;
Vega, Sebastian L. ;
Kwon, Michelle ;
Soulas, Elizabeth M. ;
Burdick, Jason A. .
BIOMATERIALS, 2016, 103 :314-323
[4]   The MSC: An Injury Drugstore [J].
Caplan, Arnold I. ;
Correa, Diego .
CELL STEM CELL, 2011, 9 (01) :11-15
[5]  
Chaudhuri O, 2016, NAT MATER, V15, P326, DOI [10.1038/nmat4489, 10.1038/NMAT4489]
[6]   Substrate stress relaxation regulates cell spreading [J].
Chaudhuri, Ovijit ;
Gu, Luo ;
Darnell, Max ;
Klumpers, Darinka ;
Bencherif, Sidi A. ;
Weaver, James C. ;
Huebsch, Nathaniel ;
Mooney, David J. .
NATURE COMMUNICATIONS, 2015, 6
[7]  
DeForest CA, 2015, NAT MATER, V14, P523, DOI [10.1038/NMAT4219, 10.1038/nmat4219]
[8]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[9]   Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine [J].
Foyt, Daniel A. ;
Norman, Michael D. A. ;
Yu, Tracy T. L. ;
Gentleman, Eileen .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (08)
[10]   An overview of the chemistry and biology of reactive aldehydes [J].
Fritz, Kristofer S. ;
Petersen, Dennis. R. .
FREE RADICAL BIOLOGY AND MEDICINE, 2013, 59 :85-91