Simple left-symmetric algebras with solvable Lie algebra

被引:43
作者
Burde, D [1 ]
机构
[1] Univ Dusseldorf, Inst Math, D-40225 Dusseldorf, Germany
关键词
D O I
10.1007/BF02678039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Left-symmetric algebras (LSAs) are Lie admissible algebras arising from geometry. The leftinvariant affine structures on a Lie group G correspond bijectively to LSA-structures on its Lie algebra. Moreover if a Lie group acts simply transitively as affine transformations on a vector space, then its Lie algebra admits a complete LSA-structure. In this paper we study simple LSAs having only trivial two-sided ideals. Some natural examples and deformations are presented. We classify simple LSAs in low dimensions and prove results about the Lie algebra of simple LSAs using a canonical root space decomposition. A special class of complete LSAs is studied.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 18 条
[1]  
Auslander L., 1977, AM MATH J, V99, P215
[2]  
Balinsky A.A., 1985, SOV MATH DOKL, V32, P228
[3]   Affine structures on nilmanifolds [J].
Burde, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :599-616
[4]   Left-invariant affine structures on reductive Lie groups [J].
Burde, D .
JOURNAL OF ALGEBRA, 1996, 181 (03) :884-902
[5]   LEFT-SYMMETRICAL STRUCTURES ON SIMPLE MODULAR LIE-ALGEBRAS [J].
BURDE, D .
JOURNAL OF ALGEBRA, 1994, 169 (01) :112-138
[6]  
CHERKASHIN VP, 1988, VEST U MOSCOW, V43, P47
[7]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[8]  
GICHEV VM, 1992, ESSAYS DIFFERENTIAL, P67
[9]  
Helmstetter J., 1979, ANN I FOURIER GRENOB, V29, P17, DOI DOI 10.5802/AIF.764
[10]  
KIM H, 1986, J DIFFER GEOM, V24, P373