Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

被引:195
作者
Fu, P. Q. [1 ]
Kawamura, K. [1 ]
Pavuluri, C. M. [1 ]
Swaminathan, T. [2 ]
Chen, J. [1 ,3 ,4 ]
机构
[1] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[2] Indian Inst Technol, Dept Chem Engn, Madras 600036, Tamil Nadu, India
[3] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China
[4] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
日本学术振兴会;
关键词
AIR-POLLUTION SOURCES; DUTY DIESEL TRUCKS; DICARBOXYLIC-ACIDS; ATMOSPHERIC AEROSOLS; OXIDATION-PRODUCTS; MASS-SPECTROMETRY; BROWN CLOUDS; SOUTH-ASIA; GAS-PHASE; CARBONACEOUS AEROSOLS;
D O I
10.5194/acp-10-2663-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl) phthalate, C-16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and beta-caryophyllinic acid) showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24-43%) was recognized as the most significant source for the total identified compounds, followed by plastic emission (16-33%), secondary oxidation (8.6-23%), and microbial/marine sources (7.2-17%). In contrast, the contributions of terrestrial plant waxes (5.9-11%) and biomass burning (4.2-6.4%) were relatively small. This study demonstrates that, in addition to fossil fuel combustion and biomass burning, the open-burning of plastics in urban area also contributes to the organic aerosols in South Asia.
引用
收藏
页码:2663 / 2689
页数:27
相关论文
共 104 条
[31]   The formation, properties and impact of secondary organic aerosol: current and emerging issues [J].
Hallquist, M. ;
Wenger, J. C. ;
Baltensperger, U. ;
Rudich, Y. ;
Simpson, D. ;
Claeys, M. ;
Dommen, J. ;
Donahue, N. M. ;
George, C. ;
Goldstein, A. H. ;
Hamilton, J. F. ;
Herrmann, H. ;
Hoffmann, T. ;
Iinuma, Y. ;
Jang, M. ;
Jenkin, M. E. ;
Jimenez, J. L. ;
Kiendler-Scharr, A. ;
Maenhaut, W. ;
McFiggans, G. ;
Mentel, Th. F. ;
Monod, A. ;
Prevot, A. S. H. ;
Seinfeld, J. H. ;
Surratt, J. D. ;
Szmigielski, R. ;
Wildt, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) :5155-5236
[32]   Cloud condensation nuclei activation of limited solubility organic aerosol [J].
Hartz, KEH ;
Tischuk, JE ;
Chan, MN ;
Chan, CK ;
Donahue, NM ;
Pandis, SN .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (04) :605-617
[33]   Formation of organic aerosols from the oxidation of biogenic hydrocarbons [J].
Hoffmann, T ;
Odum, JR ;
Bowman, F ;
Collins, D ;
Klockow, D ;
Flagan, RC ;
Seinfeld, JH .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 26 (02) :189-222
[34]  
Hopke P.K., 1985, RECEPTOR MODELING EN
[35]   Contributions of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006 [J].
Hu, Di ;
Bian, Qijing ;
Li, Teresa W. Y. ;
Lau, Alexis K. H. ;
Yu, Jian Zhen .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
[36]   Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign:: Sources and diel variations [J].
Ion, AC ;
Vermeylen, R ;
Kourtchev, I ;
Cafmeyer, J ;
Chi, X ;
Gelencsér, A ;
Maenhaut, W ;
Claeys, M .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1805-1814
[37]   β-caryophyllinic acid:: An atmospheric tracer for β-caryophyllene secondary organic aerosol [J].
Jaoui, Mohammed ;
Lewandowski, Michael ;
Kleindienst, Tadeusz E. ;
Offenberg, John H. ;
Edney, Edward O. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (05)
[38]   Organic aerosol and global climate modelling: a review [J].
Kanakidou, M ;
Seinfeld, JH ;
Pandis, SN ;
Barnes, I ;
Dentener, FJ ;
Facchini, MC ;
Van Dingenen, R ;
Ervens, B ;
Nenes, A ;
Nielsen, CJ ;
Swietlicki, E ;
Putaud, JP ;
Balkanski, Y ;
Fuzzi, S ;
Horth, J ;
Moortgat, GK ;
Winterhalter, R ;
Myhre, CEL ;
Tsigaridis, K ;
Vignati, E ;
Stephanou, EG ;
Wilson, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1053-1123
[39]   Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests [J].
Kavouras, IG ;
Mihalopoulos, N ;
Stephanou, EG .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (01) :55-58
[40]   Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific [J].
Kawamura, K ;
Ishimura, Y ;
Yamazaki, K .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (01)