High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts

被引:11
|
作者
Klaren, William D. [1 ]
Rusyn, Ivan [1 ]
机构
[1] Texas A&M Univ, Dept Vet Integrat Biosci, 4458 TAMU, College Stn, TX 77843 USA
基金
美国国家卫生研究院;
关键词
skeletal myoblasts; high-throughput; muscle toxicity; iPSC-derived cells; IN-VITRO; RHABDOMYOLYSIS; CULTURE; TISSUES; SYSTEMS; SAFETY;
D O I
10.1089/adt.2018.860
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle-associated toxicity is an underresearched area in the field of high-throughput toxicity screening; hence, the potential adverse effects of drugs and chemicals on skeletal muscle are largely unknown. Novel organotypic microphysiological in vitro models are being developed to replicate the contractile function of skeletal muscle; however, the throughput and a need for specialized equipment may limit the utility of these tissue chip models for screening. In addition, recent developments in stem cell biology have resulted in the generation of induced pluripotent stem cell (iPSC)-derived skeletal myoblasts that enable high-throughput in vitro screening. This study set out to develop a high-throughput multiplexed assay using iPSC-derived skeletal myoblasts that can be used as a first-pass screen to assess the potential for chemicals to affect skeletal muscle. We found that cytotoxicity and cytoskeletal integrity are most useful and reproducible assays for the skeletal myoblasts when evaluating overall cellular health or gauging disruptions in actin polymerization following 24h of exposure. Both assays are based on high-content imaging and quantitative image processing to derive quantitative phenotypes. Both assays showed good to excellent assay robustness and reproducibility measured by interplate and interday replicability, coefficients of variation of negative controls, and Z'-factors for positive control chemicals. Concentration response assessment of muscle-related toxicants showed specificity of the observed effects compared to the general cytotoxicity. Overall, this study establishes a high-throughput multiplexed assay using skeletal myoblasts that may be used for screening and prioritization of chemicals for more complex tissue chip-based and in vivo evaluation.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 50 条
  • [31] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Yiqi Gong
    Li Yang
    Jun Tang
    Jijian Zheng
    Nevin Witman
    Philipp Jakob
    Yao Tan
    Minglu Liu
    Ying Chen
    Huijing Wang
    Wei Fu
    Wei Wang
    Cardiovascular Toxicology, 2022, 22 : 141 - 151
  • [32] Human-Induced Pluripotent Stem Cell-Derived Models for the Study of Spinal Muscular Atrophy
    Wanisch, K.
    Boza-Moran, M. G.
    Tilgner, K.
    Yang, C.
    Neganova, I
    Armstrong, L.
    Lako, M.
    Tizzano, E.
    Yanez-Munoz, R. J.
    HUMAN GENE THERAPY, 2010, 21 (04) : 518 - 519
  • [33] Replication of Human Sapovirus in Human-Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells
    Matsumoto, Naomi
    Kurokawa, Shiho
    Tamiya, Shigeyuki
    Nakamura, Yutaka
    Sakon, Naomi
    Okitsu, Shoko
    Ushijima, Hiroshi
    Yuki, Yoshikazu
    Kiyono, Hiroshi
    Sato, Shintaro
    VIRUSES-BASEL, 2023, 15 (09):
  • [34] Nephrotoxicity assessment of Esculentoside A using human-induced pluripotent stem cell-derived organoids
    Gu, Shuyi
    Wu, Gaosong
    Lu, Dong
    Meng, Guofeng
    Wang, Yu
    Tang, Liming
    Zhang, Weidong
    PHYTOTHERAPY RESEARCH, 2024, 38 (10) : 4893 - 4903
  • [35] HUMAN MYOFIBROBLASTS INCREASE THE ARRHYTHMOGENIC POTENTIAL OF HUMAN-INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES
    Johnson, R. D.
    Mcvey, J. H.
    Camelliti, P.
    CARDIOVASCULAR DRUGS AND THERAPY, 2020, 34 (02) : 280 - 281
  • [36] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Gong, Yiqi
    Yang, Li
    Tang, Jun
    Zheng, Jijian
    Witman, Nevin
    Jakob, Philipp
    Tan, Yao
    Liu, Minglu
    Chen, Ying
    Wang, Huijing
    Fu, Wei
    Wang, Wei
    CARDIOVASCULAR TOXICOLOGY, 2022, 22 (02) : 141 - 151
  • [37] Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes—a systematic review
    Thomas Eschenhagen
    Lucie Carrier
    Pflügers Archiv - European Journal of Physiology, 2019, 471 : 755 - 768
  • [38] Assessment of the Electrophysiological Effects of Doxorubicin in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Goineau, S.
    Hunault, M.
    Legrand, C.
    Hayes, E.
    Froget, G.
    Castagne, V.
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2018, 37 (01) : 95 - 96
  • [39] Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters
    Fine, Michael
    Lu, Fang-Min
    Lin, Mei-Jung
    Moe, Orson
    Wang, Hao-Ran
    Hilgemann, Donald W.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2013, 305 (05): : C481 - C491
  • [40] Accelerated Maturation of Non-cycling Human Induced Pluripotent Stem Cell-derived neurons for High Content Screening
    Sharlow, Elizabeth
    Mendelson, Anna
    Llaneza, Danielle
    Porterfield, Veronica
    Bloom, George
    Lazo, John
    FASEB JOURNAL, 2021, 35