A generalized lower bound theorem for balanced manifolds

被引:5
作者
Juhnke-Kubitzke, Martina [1 ]
Murai, Satoshi [2 ]
Novik, Isabella [3 ]
Sawaske, Connor [3 ]
机构
[1] Univ Osnabruck, Inst Math, FB 6,Albrechtstr 28a, D-49076 Osnabruck, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
COHEN-MACAULAY COMPLEXES; COMBINATORIAL MANIFOLDS; TRIANGULATED MANIFOLDS; SIMPLICIAL COMPLEXES; BUCHSBAUM RINGS; CONJECTURE; POLYTOPES; PROPERTY; SPHERES; NUMBER;
D O I
10.1007/s00209-017-1981-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simplicial complex of dimension is said to be balanced if its graph is d-colorable. Juhnke-Kubitzke and Murai proved an analogue of the generalized lower bound theorem for balanced simplicial polytopes. We establish a generalization of their result to balanced triangulations of closed homology manifolds and balanced triangulations of orientable homology manifolds with boundary under an additional assumption that all proper links of these triangulations have the weak Lefschetz property. As a corollary, we show that if is an arbitrary balanced triangulation of any closed homology manifold of dimension , then , thus verifying a conjecture by Klee and Novik. To prove these results we develop the theory of flag H ''-vectors.
引用
收藏
页码:921 / 942
页数:22
相关论文
共 35 条
  • [1] Toric chordality
    Adiprasito, Karim
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (05): : 783 - 807
  • [2] [Anonymous], 1981, THESIS
  • [3] Aoyama Y., 1980, Japan. J. Math. (N.S.), V6, P61
  • [4] Buchsbaum* complexes
    Athanasiadis, Christos A.
    Welker, Volkmar
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 131 - 149
  • [5] On stellated spheres and a tightness criterion for combinatorial manifolds
    Bagchi, Bhaskar
    Datta, Basudeb
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 294 - 313
  • [6] Lower bounds for Buchsbaum* complexes
    Browder, Jonathan
    Klee, Steven
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (01) : 146 - 153
  • [7] Bruns W., 1996, CAMBRIDGE STUDIES AD
  • [8] Fogelsanger A.L., 1988, THESIS
  • [9] ON THE ASSOCIATED GRADED RINGS OF PARAMETER IDEALS IN BUCHSBAUM RINGS
    GOTO, S
    [J]. JOURNAL OF ALGEBRA, 1983, 85 (02) : 490 - 534
  • [10] GRABE HG, 1984, MATH NACHR, V117, P161