The Local Average Contact (LAC) method

被引:6
作者
Abbas, Mickael [1 ,2 ]
Drouet, Guillaume [1 ,2 ,3 ]
Hild, Patrick [3 ]
机构
[1] Univ Paris Saclay, UMR EDF CNRS CEA ENSTA 9219, IMSIA, 828 Blvd Marechaux, F-91762 Palaiseau, France
[2] Elect France Rech & Dev, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
[3] Univ Toulouse, Inst Math Toulouse, UMR 5219, CNRS,UPS IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Local Average Contact (LAC) condition; Unilateral contact; Nonmatching meshes; Geometrical nonconformity; FINITE-ELEMENT METHODS; MORTAR-BASED CONTACT; UNILATERAL CONTACT; FRICTIONAL CONTACT; DEFORMATION CONTACT; LAGRANGE MULTIPLIERS; 3D; APPROXIMATION; FORMULATION; 2D;
D O I
10.1016/j.cma.2018.05.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Local Average Contact (LAC) method allows the handling of nonmatching meshes in an easy way by averaging locally the interpenetration between the contacting bodies. In this paper we consider the frictionless unilateral contact problem and several numerical experiments involving two and three-dimensional bodies discretized with various linear and quadratic finite elements. We also present a convergence analysis of the method in the geometrical nonconforming case in which the boundary points of the candidate contact areas do not coincide. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 513
页数:26
相关论文
共 54 条
[1]  
Adams RA., 1975, Sobolev Spaces
[2]   A STABILIZED LAGRANGE MULTIPLIER METHOD FOR THE ENRICHED FINITE-ELEMENT APPROXIMATION OF CONTACT PROBLEMS OF CRACKED ELASTIC BODIES [J].
Amdouni, Saber ;
Hild, Patrick ;
Lleras, Vanessa ;
Moakher, Maher ;
Renard, Yves .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04) :813-839
[3]  
[Anonymous], 1988, Stud. Appl. Math., DOI DOI 10.1137/1.9781611970845
[4]  
[Anonymous], 2008, The Mathematical Theory of Finite Element Methods
[5]  
[Anonymous], 1991, Computational Methods in Nonlinear Mechanics
[6]  
[Anonymous], 2002, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
[7]   About the mortar finite element method for non-local Coulomb law in contact problems [J].
Bayada, G ;
Chambat, M ;
Lhalouani, K ;
Sassi, T .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12) :1323-1328
[8]   Extension of the mortar finite element method to a variational inequality modeling unilateral contact [J].
Ben Belgacem, F ;
Hild, P ;
Laborde, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :287-303
[9]   Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods [J].
Ben Belgacem, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1198-1216
[10]   Approximation of the unilateral contact problem by the mortar finite element method [J].
BenBelgacem, F ;
Hild, P ;
Laborde, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (01) :123-127