FRET lasing from self-assembled DNA tetrahedral nanostructures suspended in optofluidic droplet resonators

被引:9
作者
Aas, M. [1 ]
Ozelci, E. [1 ]
Jonas, A. [2 ]
Kiraz, A. [1 ]
Liu, H. [3 ,4 ]
Fan, C. [3 ,4 ]
Chen, Q. [5 ]
Fan, X. [5 ]
机构
[1] Koc Univ, Dept Phys, TR-34450 Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkey
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Div Phys Biol, Shanghai 201800, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Bioimaging Ctr, Shanghai 201800, Peoples R China
[5] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
关键词
LASERS;
D O I
10.1140/epjst/e2014-02280-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate Forster resonance energy transfer (FRET) lasing from self-assembled tetrahedral DNA complexes labeled with Cy3 and Cy5 dyes and suspended as a gain medium in aqueous micro-droplet cavities deposited on a superhydrophobic surface. Threshold fluence and differential efficiency are characterized for DNA complexes containing 1Cy3-3Cy5 and 3Cy3-1Cy5. We demonstrate that at a constant Cy5 concentration, average threshold fluence is reduced 3 to 8 times and average differential efficiency is enhanced 6 to 30 times for 3Cy3-1Cy5 as compared to 1Cy3-3Cy5. Using 3Cy3-1Cy5 nanostructures, FRET lasing is observed at very low concentrations down to similar to 1 mu M. This work shows that optofluidic microlasers based on droplet resonators can be combined with DNA nanotechnology to explore applications in bio/chemical sensing and novel photonic devices.
引用
收藏
页码:2057 / 2062
页数:6
相关论文
共 16 条
[1]   Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control [J].
Chen, Qiushu ;
Liu, Huajie ;
Lee, Wonsuk ;
Sun, Yuze ;
Zhu, Dan ;
Pei, Hao ;
Fan, Chunhai ;
Fan, Xudong .
LAB ON A CHIP, 2013, 13 (17) :3351-3354
[2]  
DATSYUK VV, 2001, J MOL LIQ, V84, P1308
[3]  
Fan XD, 2014, NAT METHODS, V11, P141, DOI [10.1038/NMETH.2805, 10.1038/nmeth.2805]
[4]  
Fan XD, 2011, NAT PHOTONICS, V5, P591, DOI [10.1038/NPHOTON.2011.206, 10.1038/nphoton.2011.206]
[5]  
Gather MC, 2011, NAT PHOTONICS, V5, P406, DOI [10.1038/nphoton.2011.99, 10.1038/NPHOTON.2011.99]
[6]   Simple largely tunable optical microcavity [J].
Kiraz, A. ;
Kurt, A. ;
Dundar, M. A. ;
Demirel, A. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (08)
[7]   Intracavity DNA Melting Analysis with Optofluidic Lasers [J].
Lee, Wonsuk ;
Fan, Xudong .
ANALYTICAL CHEMISTRY, 2012, 84 (21) :9558-9563
[8]   Single mode optofluidic distributed feedback dye laser [J].
Li, ZY ;
Zhang, ZY ;
Emery, T ;
Scherer, A ;
Psaltis, D .
OPTICS EXPRESS, 2006, 14 (02) :696-701
[9]   Integrated optofluidics: A new river of light [J].
Monat, C. ;
Domachuk, P. ;
Eggleton, B. J. .
NATURE PHOTONICS, 2007, 1 (02) :106-114
[10]   Optofluidic FRET microlasers based on surface-supported liquid microdroplets [J].
Ozelci, E. ;
Aas, M. ;
Jonas, A. ;
Kiraz, A. .
LASER PHYSICS LETTERS, 2014, 11 (04)