Trivial stationary solutions to the Kuramoto-Sivashinsky and certain nonlinear elliptic equations

被引:14
作者
Cao, Yanping
Titi, Edriss S. [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[4] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
Kuramoto-Sivashinsky equation;
D O I
10.1016/j.jde.2006.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only locally integrable stationary solutions to the integrated Kuramoto-Sivashinsky equation in R and R-2 are the trivial constant solutions. We extend our technique and prove similar results to other nonlinear elliptic problems in R-N. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 27 条
[1]   Finite-time singularity versus global regularity for hyper-viscous Hamilton-Jacobi-like equations [J].
Bellout, H ;
Benachour, S ;
Titi, ES .
NONLINEARITY, 2003, 16 (06) :1967-1989
[2]   Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation [J].
Bronski, Jared C. ;
Gambill, Thomas N. .
NONLINEARITY, 2006, 19 (09) :2023-2039
[3]   On the non-homogeneous stationary Kuramoto-Sivashinsky equation [J].
Cheskidov, A ;
Foias, C .
PHYSICA D, 2001, 154 (1-2) :1-14
[4]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[5]  
CONSTANTIN P, 1989, APPL MATH SCI, V70
[6]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[7]  
FOIAS C, 1988, J MATH PURE APPL, V67, P197
[8]  
Foias C., 1995, J. Dynam. Differential Equations, V7, P365
[9]  
FOIAS C, 2001, ENCY MATH APPL, V83
[10]   New bounds for the Kuramoto-Sivashinsky equation [J].
Giacomelli, L ;
Otto, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) :297-318