ASYMPTOTICS OF SPECTRAL DENSITY ESTIMATES

被引:68
作者
Liu, Weidong [1 ]
Wu, Wei Biao [2 ]
机构
[1] Zhejiang Univ, Dept Math, Huangzhou, Zhejiang, Peoples R China
[2] Univ Chicago, Chicago, IL 60637 USA
关键词
QUADRATIC-FORMS; ORIGIN KERNELS; LIMIT-THEOREM; TIME-SERIES; TRUNCATION; MAXIMUM;
D O I
10.1017/S026646660999051X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of spectral densities of stationary processes, a fundamental problem in spectral analysis of time series. Under natural and easily verifiable conditions, we obtain consistency and asymptotic normality of spectral density estimates. Asymptotic distribution of maximum deviations of the spectral density estimates is also derived. The latter result sheds new light on the classical problem of tests of white noises.
引用
收藏
页码:1218 / 1245
页数:28
相关论文
共 36 条
[21]   Spectral density estimation and robust hypothesis testing using steep origin kernels without truncation [J].
Phillips, Peter C. B. ;
Sun, Yixiao ;
Jin, Sainan .
INTERNATIONAL ECONOMIC REVIEW, 2006, 47 (03) :837-894
[22]  
Politis D. N., 1999, SUBSAMPLING
[23]  
Priestley M. B., 1988, Non-linear and non-stationary time series analysis
[24]   ASYMPTOTIC NORMALITY, STRONG MIXING AND SPECTRAL DENSITY ESTIMATES [J].
ROSENBLATT, M .
ANNALS OF PROBABILITY, 1984, 12 (04) :1167-1180
[25]  
Rosenblatt M., 1985, STATIONARY SEQUENCES
[26]  
Rudzkis R., 1985, LITH MATH J, V25, P118
[27]   Asymptotic spectral theory for nonlinear time series [J].
Shao, Xiaofeng ;
Wu, Wei Biao .
ANNALS OF STATISTICS, 2007, 35 (04) :1773-1801
[28]   OPTIMAL MEAN-SQUARED-ERROR BATCH SIZES [J].
SONG, WMT ;
SCHMEISER, BW .
MANAGEMENT SCIENCE, 1995, 41 (01) :110-123
[29]  
TENVREGELAAR JM, 1991, THEORY PROBABILITY I, V35, P177
[30]  
Tong H., 1990, NONLINEAR TIME SERIE