ASYMPTOTICS OF SPECTRAL DENSITY ESTIMATES

被引:68
作者
Liu, Weidong [1 ]
Wu, Wei Biao [2 ]
机构
[1] Zhejiang Univ, Dept Math, Huangzhou, Zhejiang, Peoples R China
[2] Univ Chicago, Chicago, IL 60637 USA
关键词
QUADRATIC-FORMS; ORIGIN KERNELS; LIMIT-THEOREM; TIME-SERIES; TRUNCATION; MAXIMUM;
D O I
10.1017/S026646660999051X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of spectral densities of stationary processes, a fundamental problem in spectral analysis of time series. Under natural and easily verifiable conditions, we obtain consistency and asymptotic normality of spectral density estimates. Asymptotic distribution of maximum deviations of the spectral density estimates is also derived. The latter result sheds new light on the classical problem of tests of white noises.
引用
收藏
页码:1218 / 1245
页数:28
相关论文
共 36 条
[1]  
Anderson T. W., 1971, STAT ANAL TIME SERIE
[2]   NON-STRONG MIXING AUTOREGRESSIVE PROCESSES [J].
ANDREWS, DWK .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) :930-934
[3]  
[Anonymous], 1981, SPECTRAL ANAL TIME S
[4]  
BENTKUS RY, 1982, THEORY PROBABILITY I, V27, P795
[5]   LAW OF LARGE NUMBERS FOR MAXIMUM IN A STATIONARY GAUSSIAN SEQUENCE [J].
BERMAN, SM .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (01) :93-&
[6]  
BRILLING.DR, 1969, BIOMETRIKA, V56, P375, DOI 10.1093/biomet/56.2.375
[7]  
Brillinger D., 1975, Time Series Data Analysis and Theory
[8]  
Brockwell PJ., 1991, TIME SERIES THEORY M
[9]   Block length selection in the bootstrap for time series [J].
Bühlmann, P ;
Künsch, HR .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (03) :295-310
[10]  
Davidson J., 2002, ECONOMET J, V5, P160