A higher-order LQ decomposition for separable covariance models
被引:6
作者:
Gerard, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Stat, Seattle, WA 98195 USAUniv Washington, Dept Stat, Seattle, WA 98195 USA
Gerard, David
[1
]
Hoff, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Stat, Seattle, WA 98195 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAUniv Washington, Dept Stat, Seattle, WA 98195 USA
Hoff, Peter
[1
,2
]
机构:
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
Tucker decomposition;
LQ decomposition;
Singular value decomposition;
Polar decomposition;
Tensor;
Likelihood ratio test;
TENSOR DECOMPOSITIONS;
APPROXIMATION;
D O I:
10.1016/j.laa.2016.04.033
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We develop a higher-order generalization of the LQ decomposition and show that this decomposition plays an important role in likelihood-based estimation and testing for separable, or Kronecker structured, covariance models, such as the multilinear normal model. This role is analogous to that of the LQ decomposition in likelihood inference for the multivariate normal model. Additionally, this higher-order LQ decomposition can be used to construct an alternative version of the popular higher-order singular value decomposition for tensor-valued data. We also develop a novel generalization of the polar decomposition to tensor-valued data. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 84
页数:28
相关论文
共 31 条
[31]
Wiesel A, 2012, 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P880, DOI 10.1109/SSP.2012.6319848