A higher-order LQ decomposition for separable covariance models

被引:6
作者
Gerard, David [1 ]
Hoff, Peter [1 ,2 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Tucker decomposition; LQ decomposition; Singular value decomposition; Polar decomposition; Tensor; Likelihood ratio test; TENSOR DECOMPOSITIONS; APPROXIMATION;
D O I
10.1016/j.laa.2016.04.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a higher-order generalization of the LQ decomposition and show that this decomposition plays an important role in likelihood-based estimation and testing for separable, or Kronecker structured, covariance models, such as the multilinear normal model. This role is analogous to that of the LQ decomposition in likelihood inference for the multivariate normal model. Additionally, this higher-order LQ decomposition can be used to construct an alternative version of the popular higher-order singular value decomposition for tensor-valued data. We also develop a novel generalization of the polar decomposition to tensor-valued data. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 84
页数:28
相关论文
共 31 条
[1]  
Akdemir D, 2011, J ALGEBR STUD, V2, P98
[2]   MAXIMUM-LIKELIHOOD-ESTIMATES AND LIKELIHOOD-RATIO CRITERIA FOR MULTIVARIATE ELLIPTICALLY CONTOURED DISTRIBUTIONS [J].
ANDERSON, TW ;
FANG, KT ;
HSU, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (01) :55-59
[3]  
[Anonymous], 2013, Matrix Analysis
[4]  
[Anonymous], 2022, Testing Statistical Hypotheses, DOI [DOI 10.1007/978-3-030-70578-7, 10.1007/978-3-030-70578-7]
[5]  
[Anonymous], 1979, An Introduction to Multivariate Statistics
[6]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[7]  
DAWID AP, 1981, BIOMETRIKA, V68, P265, DOI 10.1093/biomet/68.1.265
[8]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[9]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[10]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127