Non-vanishing of Hilbert Poincare series

被引:0
|
作者
Kumari, Moni [1 ]
机构
[1] Natl Inst Sci Educ & Res, HBNI, Via Jatni, Khurja 752050, Odisha, India
关键词
Hilbert modular forms; Poincare series; Non-vanishing;
D O I
10.1016/j.jmaa.2018.06.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some non-vanishing results of Hilbert Poincare series. We derive these results, by showing that the Fourier coefficients of Hilbert Poincare series satisfy some nice orthogonality relations for sufficiently large weight as well as for sufficiently large level. To prove later results, we generalize a method of E. Kowalski et al. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1476 / 1485
页数:10
相关论文
共 50 条
  • [41] Results on the non-vanishing of derivatives of L-functions of vector-valued modular forms
    Lim, Subong
    Raji, Wissam
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025, 68 (01) : 63 - 79
  • [42] Non-vanishing of the first derivative of GL(3) x GL(2) L-functions
    Chen, Guohua
    Yan, Xiaofei
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (03) : 847 - 869
  • [43] A spectral reciprocity formula and non-vanishing for L-functions on GL(4) x GL(2)
    Blomer, Valentin
    Li, Xiaoqing
    Miller, Stephen D.
    JOURNAL OF NUMBER THEORY, 2019, 205 : 1 - 43
  • [44] Quantitative non-vanishing of central values of certain L-functions on GL(2) x GL(3)
    Sugiyama, Shingo
    Tsuzuki, Masao
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 1447 - 1479
  • [45] On Poincare Series of Filtrations
    Campillo, A.
    Delgado, F.
    Gusein-Zade, S. M.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2015, 5 (02): : 125 - 139
  • [46] Uninhibited Poincare series
    Pribitkin, Wladimir De Azevedo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) : 335 - 347
  • [47] Nonvanishing of Siegel-Poincare series II
    Das, Soumya
    Kohnen, Winfried
    Sengupta, Jyoti
    ACTA ARITHMETICA, 2012, 156 (01) : 75 - 81
  • [48] Non-vanishing of special L-values of cusp forms on GL(2) with totally split prime power twists
    Kwon, Jaesung
    Sun, Hae-Sang
    JOURNAL OF NUMBER THEORY, 2020, 213 : 347 - 369
  • [49] Nonvanishing of Siegel Poincare series
    Das, Soumya
    Sengupta, Jyoti
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 869 - 883
  • [50] A Poincare series on hyperbolic space
    Basak, Tathagata
    ADVANCES IN APPLIED MATHEMATICS, 2018, 95 : 177 - 198