On the Hurwitz action in affine Coxeter groups

被引:2
作者
Wegener, Patrick [1 ]
机构
[1] TU Kaiserslautern, Kaiserslautern, Germany
关键词
Coxeter groups; Hurwitz action; Reflection decompositions; ELEMENTS;
D O I
10.1016/j.jpaa.2020.106308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We call an element of a Coxeter group a parabolic quasi-Coxeter element if it has a reduced decomposition into a product of reflections that generate a parabolic subgroup. We show that for a parabolic quasi-Coxeter element in an affine Coxeter group the Hurwitz action on its set of reduced decompositions into a product of reflections is transitive. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 28 条
[1]  
[Anonymous], 2000, IZVESTIYA ROSSIISKOI
[2]  
Baumeister B., 2014, P AM MATH SOC B, V1, P149
[3]   A note on Weyl groups and root lattices [J].
Baumeister, Barbara ;
Wegener, Patrick .
ARCHIV DER MATHEMATIK, 2018, 111 (05) :469-477
[4]   On the Hurwitz action in finite Coxeter groups [J].
Baumeister, Barbara ;
Gobet, Thomas ;
Roberts, Kieran ;
Wegener, Patrick .
JOURNAL OF GROUP THEORY, 2017, 20 (01) :103-131
[5]   The dual braid monoid [J].
Bessis, D .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :647-683
[6]  
Bourbaki N., 2002, ELEMENTS MATH, DOI DOI 10.1007/978-3-540-89394-3
[7]   Rigidity of Coxeter groups and Artin groups [J].
Brady, N ;
McCammond, JP ;
Mühlherr, B ;
Neumann, WD .
GEOMETRIAE DEDICATA, 2002, 94 (01) :91-109
[8]  
Brieskorn E., 1988, ser. Contemp. Math., V78, P45
[9]  
CARTER RW, 1972, COMPOS MATH, V25, P1
[10]   Dual braid monoids, Mikado braids and positivity in Hecke algebras [J].
Digne, Francois ;
Gobet, Thomas .
MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (1-2) :215-238