Error estimates for Hermite interpolation on spheres

被引:3
作者
Levesley, J [1 ]
Luo, Z [1 ]
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
关键词
hermite interpolation; pseudodifferential operator; rotational differential operator; convergence rate;
D O I
10.1016/S0022-247X(02)00451-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove convergence rates for spherical spline Hermite interpolation on the sphere Sd-1 via an error estimate given in a technical report by Luo and Levesley. The functionals in the Hermite interpolation are either point evaluations of pseudodifferential operators or rotational differential operators, the desirable feature of these operators being that they map polynomials to polynomials. Convergence rates for certain derivatives are given in terms of maximum point separation. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:46 / 61
页数:16
相关论文
共 50 条
  • [41] Interpolation of fuzzy data by Hermite polynomial
    Goghary, HS
    Abbasbandy, S
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (05) : 595 - 600
  • [42] Geometric Hermite interpolation with circular precision
    Farin, Gerald
    COMPUTER-AIDED DESIGN, 2008, 40 (04) : 476 - 479
  • [43] Gibbs phenomenon in the Hermite interpolation on the circle
    Berriochoa, E.
    Cachafeiro, A.
    Diaz, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 253 : 274 - 286
  • [44] Bivariate Hermite interpolation on the exponential curve
    Van Manh Phung
    Van Long Tang
    Periodica Mathematica Hungarica, 2019, 78 : 166 - 177
  • [45] ALGEBRAIC SURFACE DESIGN WITH HERMITE INTERPOLATION
    BAJAJ, CL
    IHM, I
    ACM TRANSACTIONS ON GRAPHICS, 1992, 11 (01): : 61 - 91
  • [46] Set-valued Hermite interpolation
    Baier, Robert
    Perria, Gilbert
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (10) : 1349 - 1372
  • [47] Hermite mean value interpolation on polygons
    Beatson, Rick
    Floater, Michael S.
    Kashagen, Carl Emil
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 60 : 18 - 27
  • [48] On mean convergence of Hermite-Fejer and Hermite interpolation for Erdos weights
    Damelin, SB
    Jung, HS
    Kwon, KH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 137 (01) : 71 - 76
  • [49] Convergence of Hermite and Hermite-Fejer interpolation of higher order for Freud weights
    Damelin, SB
    Jung, HS
    Kwon, KH
    JOURNAL OF APPROXIMATION THEORY, 2001, 113 (01) : 21 - 58
  • [50] An Extension of Fejer's Condition for Hermite Interpolation
    Berriochoa, Elias
    Cachafeiro, Alicia
    Garcia-Amor, Jose M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (03) : 651 - 664