Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating
被引:41
作者:
Bermudez, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, Spain
Bermudez, A.
[1
]
Munoz-Sola, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, Spain
Munoz-Sola, R.
[1
]
Vazquez, R.
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, ItalyUniv Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, Spain
Vazquez, R.
[2
]
机构:
[1] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, Spain
Magnetohydrodynamics;
Joule heating;
Boussinesq approximation;
Coupled nonlinear PDE;
Existence of solution;
LIPSCHITZ POLYHEDRA;
TRACES;
APPROXIMATION;
UNIQUENESS;
EXISTENCE;
D O I:
10.1016/j.jmaa.2010.03.046
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the coupling of the equations of steady-state magnetohydrodynamics (MHO) with the heat equation when the buoyancy effects due to temperature differences in the flow as well as Joule effect and viscous heating are (all) taken into account. Two models for the gravity force are considered: the first one is the well-known Boussinesq approximation: in the second one density is assumed to be constant except in the gravity force, where it is assumed to be a non-increasing function of the temperature. The equations are posed in a bounded three-dimensional domain. We give existence results of weak solutions to both models under certain conditions on the data. We also give some uniqueness results. (C) 2010 Elsevier Inc. All rights reserved.