An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem

被引:16
|
作者
Boubendir, Yassine [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Helmholtz equation; domain decomposition method; Bessel functions; coupling BEM-FEM;
D O I
10.1016/j.cam.2006.02.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the BEM-FEM non-overlapping domain decomposition method introduced in Boubendir [Techniques de Decomposition de Domaine et Methode d'Equations Integrales, Ph.D. Thesis, INSA, Toulouse, France, 2002] and improved in Boubendirer al. [A coupling BEM-FEM method using a FETI-LIKE domain decomposition method, in: Proceedings of Waves 2005, Providence, RI, 2005, pp. 188-190] and Bendali et al. [A FETI-like domain decomposition method for coupling FEM and BEM in large-size problems of acoustic scattering, to appear.] The transmission conditions used in this method introduce a quantity that prevents the approach of Despres [Methodes de decomposition de domaine pour les problemes de propagation d'ondes en regime harmonique, Le theoreme de Borg pour l'equation de Hill vectorielle, Ph.D. Thesis, Paris VI University, France, 1991] to establish convergence to be adapted. However, we show that convergence can be established when the geometry allows for a decomposition of the solution into propagating and evanescent portions with a methodology based on modal analysis. Here, we exemplify this in the case of circular cylindrical geometries where the derivations can be based on properties of Bessel functions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 291
页数:10
相关论文
共 50 条
  • [41] A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR CONTINUOUS-PRESSURE MIXED FINITE ELEMENT APPROXIMATIONS OF THE STOKES PROBLEM
    Benhassine, Hani
    Bendali, Abderrahmane
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 675 - 696
  • [42] Non-overlapping domain decomposition solution schemes for structural mechanics isogeometric analysis
    Stavroulakis, George
    Tsapetis, Dimitris
    Papadrakakis, Manolis
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 695 - 717
  • [43] A fully discrete BEM-FEM for the exterior stokes problem in the plane
    Meddahi, S
    Sayas, FJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) : 2082 - 2102
  • [44] A non-overlapping domain decomposition method for parabolic initial-boundary value problems
    Lube, G
    Otto, FC
    Muller, H
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 359 - 369
  • [45] A New Modeling Procedure for the IE-Based Non-overlapping Domain Decomposition Method
    Zheng, Kai-Lai
    Zhou, Hou-Xing
    Hong, Wei
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 955 - 958
  • [46] Springing analysis of a seagoing vessel using fully coupled BEM-FEM in the time domain
    Kim, Yooil
    Kim, Kyoung-Hwan
    Kim, Yonghwan
    OCEAN ENGINEERING, 2009, 36 (11) : 785 - 796
  • [47] Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method
    Boubendir, Y.
    Bendali, A.
    Fares, M. B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (11) : 1624 - 1650
  • [48] Study of a non-overlapping domain decomposition method: Steady Navier-Stokes equations
    Rebollo, TC
    Vera, EC
    APPLIED NUMERICAL MATHEMATICS, 2005, 55 (01) : 100 - 124
  • [49] Modeling large almost periodic structures using a non-overlapping domain decomposition method
    Vouvakis, M
    Zhao, K
    Lee, JF
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 343 - 346
  • [50] A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface
    Rebollo, TC
    Vera, EC
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (03) : 221 - 226