Min-max theory for constant mean curvature hypersurfaces

被引:37
作者
Zhou, Xin [1 ,3 ]
Zhu, Jonathan J. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
MINIMAL HYPERSURFACES; SURFACES; EXISTENCE; REGULARITY; SPHERES; FOLIATION;
D O I
10.1007/s00222-019-00886-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a min-max theory for the construction of constant mean curvature (CMC) hypersurfaces of prescribed mean curvature in an arbitrary closed manifold. As a corollary, we prove the existence of a nontrivial, smooth, closed, almost embedded, CMC hypersurface of any given mean curvature c. Moreover, if c is nonzero then our min-max solution always has multiplicity one.
引用
收藏
页码:441 / 490
页数:50
相关论文
共 62 条
[1]   MIN-MAX THEORY AND THE ENERGY OF LINKS [J].
Agol, Ian ;
Marques, Fernando C. ;
Neves, Andre .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (02) :561-578
[2]  
Almgren F.J., 1962, Topology, V1, P257
[3]  
ALMGREN FJ, 1976, MEM AM MATH SOC, V4, pR5
[4]  
ALMGREN JR F. J., 1965, THEORY VARIFOLDS MIM
[5]  
[Anonymous], 1982, Uspekhi Mat. Nauk
[6]  
[Anonymous], 1983, P CTR MATH ANAL
[7]  
Arnold V., 2004, ARNOLDS PROBLEMS
[8]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[9]  
Bellettini C., 2018, ARXIV180200377
[10]  
BERARD P, 1982, ANN SCI ECOLE NORM S, V15, P513