Connectivity disruption sparks explosive epidemic spreading

被引:30
作者
Bottcher, L. [1 ]
Woolley-Meza, O. [2 ]
Goles, E. [3 ]
Helbing, D. [4 ]
Herrmann, H. J. [5 ]
机构
[1] ETH, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] ETH, Computat Social Sci, Clausiusstr 37, CH-8092 Zurich, Switzerland
[3] Univ Adolfo Ibanez, Ave Diagonal Las Torres 2640, Santiago, Chile
[4] ETH, Computat Social Sci, Clausiusstr 50, CH-8092 Zurich, Switzerland
[5] ETH, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
PERCOLATION; TRANSITION; COMPLEX;
D O I
10.1103/PhysRevE.93.042315
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the spread of an infection or other malfunction of cascading nature when a system component can recover only if it remains reachable from a functioning central component. We consider the susceptible-infected-susceptible model, typical of mathematical epidemiology, on a network. Infection spreads from infected to healthy nodes, with the addition that infected nodes can only recover when they remain connected to a predefined central node, through a path that contains only healthy nodes. In this system, clusters of infected nodes will absorb their noninfected interior because no path exists between the central node and encapsulated nodes. This gives rise to the simultaneous infection of multiple nodes. Interestingly, the system converges to only one of two stationary states: either the whole population is healthy or it becomes completely infected. This simultaneous cluster infection can give rise to discontinuous jumps of different sizes in the number of failed nodes. Larger jumps emerge at lower infection rates. The network topology has an important effect on the nature of the transition: we observed hysteresis for networks with dominating local interactions. Our model shows how local spread can abruptly turn uncontrollable when it disrupts connectivity at a larger spatial scale.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs [J].
Andrade, JS ;
Herrmann, HJ ;
Andrade, RFS ;
da Silva, LR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[3]  
[Anonymous], P01HD31921 ADD HLTH
[4]   Explosive Percolation via Control of the Largest Cluster [J].
Araujo, N. A. M. ;
Herrmann, H. J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[5]  
Bastian M., 2009, P INT AAAI C WEB SOC, V3, DOI [DOI 10.1609/ICWSM.V3I1.13937, 10.1609/icwsm.v3i1.13937]
[6]   ORDER OF THE TRANSITION VERSUS SPACE DIMENSION IN A FAMILY OF CELLULAR AUTOMATA [J].
BIDAUX, R ;
BOCCARA, N ;
CHATE, H .
PHYSICAL REVIEW A, 1989, 39 (06) :3094-3105
[7]   Disease-induced resource constraints can trigger explosive epidemics [J].
Boettcher, L. ;
Woolley-Meza, O. ;
Araujo, N. A. M. ;
Herrmann, H. J. ;
Helbing, D. .
SCIENTIFIC REPORTS, 2015, 5
[8]   The Hidden Geometry of Complex, Network-Driven Contagion Phenomena [J].
Brockmann, Dirk ;
Helbing, Dirk .
SCIENCE, 2013, 342 (6164) :1337-1342
[9]   Avalanche outbreaks emerging in cooperative contagions [J].
Cai, Weiran ;
Chen, Li ;
Ghanbarnejad, Fakhteh ;
Grassberger, Peter .
NATURE PHYSICS, 2015, 11 (11) :936-940
[10]   Avoiding a Spanning Cluster in Percolation Models [J].
Cho, Y. S. ;
Hwang, S. ;
Herrmann, H. J. ;
Kahng, B. .
SCIENCE, 2013, 339 (6124) :1185-1187