On Lie solvable restricted enveloping algebras

被引:7
作者
Siciliano, Salvatore [1 ]
机构
[1] Univ Salento, Dipartimento Matemat, I-73100 Lecce, Italy
关键词
restricted enveloping algebra; Lie derived length; Lie centrally metabelian;
D O I
10.1016/j.jalgebra.2007.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study the Lie derived lengths of a restricted enveloping algebra u(L), for a non-abelian restricted Lie algebra L over a field of positive characteristic p. For p > 2 we show that if the Lie derived length of u(L) is minimal then u(L) is Lie nilpotent. Moreover, we investigate the case when the strong Lie derived length of u(L) is minimal. For odd p we establish a classification of Lie centrally metabelian restricted enveloping algebras. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 17 条
  • [1] CATINO F, 2005, PURE MATH APPL, V16, P125
  • [2] ON THE LIE IDEALS OF A RING
    GUPTA, N
    LEVIN, F
    [J]. JOURNAL OF ALGEBRA, 1983, 81 (01) : 225 - 231
  • [3] Lie centrally metabelian group rings in characteristic 3
    Kulshammer, B
    Sharma, RK
    [J]. JOURNAL OF ALGEBRA, 1996, 180 (01) : 111 - 120
  • [4] Lie identities for Hopf algebras
    Riley, DM
    Tasic, V
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 122 (1-2) : 127 - 134
  • [5] RESTRICTED LIE-ALGEBRAS AND THEIR ENVELOPES
    RILEY, DM
    SHALEV, A
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (01): : 146 - 164
  • [6] HYPERCENTRAL ENVELOPING-ALGEBRAS ARE LIE NILPOTENT
    RILEY, DM
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (177) : 103 - 109
  • [7] THE LIE-STRUCTURE OF ENVELOPING-ALGEBRAS
    RILEY, DM
    SHALEV, A
    [J]. JOURNAL OF ALGEBRA, 1993, 162 (01) : 46 - 61
  • [8] A note on Lie centrally metabelian group algebras
    Sahai, M
    Srivastava, JB
    [J]. JOURNAL OF ALGEBRA, 1997, 187 (01) : 7 - 15
  • [9] Sehgal S. K., 1978, TOPICS GROUP RINGS
  • [10] THE DERIVED LENGTH OF LIE SOLUBLE GROUP-RINGS .2.
    SHALEV, A
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 93 - 99