Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy

被引:56
作者
Guo, Bin [1 ,2 ]
Gao, Wenjie [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
来源
COMPTES RENDUS MECANIQUE | 2014年 / 342卷 / 09期
关键词
Quasilinear hyperbolic; Blow-up in finite time; Positive initial energy; WAVE-EQUATION; EXISTENCE;
D O I
10.1016/j.crme.2014.06.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to study an initial and homogeneous boundary value problem to a quasilinear hyperbolic equation with a p(x, t)-Laplacian and a positive initial energy. The authors prove that the solution blows up in a finite time under some conditions on the initial value, the exponents and the coefficients in the equation. The results generalize and improve that of S.N. Antonsev (2011) [6]. Besides, the conditions of positivity of the integral to the initial data and the boundedness of p(t)(x, t) are removed. (c) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:513 / 519
页数:7
相关论文
共 9 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Ferreira, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 :62-77
[3]   Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions [J].
Antontsev, Stanislav .
COMPTES RENDUS MECANIQUE, 2011, 339 (12) :751-755
[4]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[5]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[6]  
Guo B., ARXIV13082466
[7]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21
[8]   Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent [J].
Mihailescu, Mihai ;
Pucci, Patrizia ;
Radulescu, Vicentiu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :687-698
[9]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1