Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia

被引:185
作者
Yu, Qingbao [1 ]
Erhardt, Erik B. [2 ]
Sui, Jing [1 ,3 ,4 ]
Du, Yuhui [1 ,5 ]
He, Hao [1 ,6 ]
Hjelm, Devon [1 ,7 ]
Cetin, Mustafa S. [1 ,7 ]
Rachakonda, Srinivas [1 ]
Miller, Robyn L. [1 ]
Pearlson, Godfrey [8 ,9 ,10 ]
Calhoun, Vince D. [1 ,6 ,8 ,9 ]
机构
[1] Mind Res Network, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87113 USA
[3] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[5] North Univ China, Sch Informat & Commun Engn, Taiyuan 030051, Peoples R China
[6] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA
[7] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87106 USA
[8] Olin Neuropsychiat Res Ctr, Hartford, CT 06106 USA
[9] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[10] Yale Univ, Dept Neurobiol, New Haven, CT 06520 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
R-fMRI; Dynamic; Time varying; Brain graph; ICA; Schizophrenia; FUNCTIONAL NETWORK CONNECTIVITY; CEREBRAL-BLOOD-FLOW; DEFAULT MODE NETWORK; RESTING-STATE FMRI; EMOTION REGULATION; DOSE EQUIVALENTS; BLIND SEPARATION; COGNITIVE STATES; SMALL-WORLD; ICA;
D O I
10.1016/j.neuroimage.2014.12.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting-state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First-and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia, which may underscore the abnormal brain performance in this mental illness. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 128 条
[1]   Group-ICA model order highlights patterns of functional brain connectivity [J].
Abou Elseoud, Ahmed ;
Littow, Hard ;
Remes, Jukka ;
Starack, Tuomo ;
Nikkinen, Juha ;
Nissila, Juuso ;
Timonen, Markku ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[2]   The Effect of Model Order Selection in Group PICA [J].
Abou-Elseoud, Ahmed ;
Starck, Tuomo ;
Remes, Jukka ;
Nikkinen, Juha ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
HUMAN BRAIN MAPPING, 2010, 31 (08) :1207-1216
[3]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[4]   Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Wei, Yonghua ;
Eichele, Tom ;
Calhoun, Vince D. .
NEUROIMAGE, 2012, 59 (04) :4141-4159
[5]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[6]  
Amft M., 2014, BRAIN STRUC IN PRESS
[7]   Antipsychotic Dose Equivalents and Dose-Years: A Standardized Method for Comparing Exposure to Different Drugs [J].
Andreasen, Nancy C. ;
Pressler, Marcus ;
Nopoulos, Peg ;
Miller, Del ;
Ho, Beng-Choon .
BIOLOGICAL PSYCHIATRY, 2010, 67 (03) :255-262
[8]   Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling [J].
Balsters, Joshua H. ;
Laird, Angela R. ;
Fox, Peter T. ;
Eickhoff, Simon B. .
HUMAN BRAIN MAPPING, 2014, 35 (07) :3152-3169
[9]   Altered resting state complexity in schizophrenia [J].
Bassett, Danielle S. ;
Nelson, Brent G. ;
Mueller, Bryon A. ;
Camchong, Jazmin ;
Lim, Kelvin O. .
NEUROIMAGE, 2012, 59 (03) :2196-2207
[10]   Dynamic reconfiguration of human brain networks during learning [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Porter, Mason A. ;
Mucha, Peter J. ;
Carlson, Jean M. ;
Grafton, Scott T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) :7641-7646