Consistent boundary conditions of the multiple-relaxation-time lattice Boltzmann method for convection-diffusion equations

被引:8
|
作者
Zhang, Liangqi [1 ]
Yang, Shiliang [1 ]
Zeng, Zhong [2 ,3 ]
Chew, Jia Wei [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Chongqing Univ, Coll Aerosp Engn, Dept Engn Mech, Chongqing 400044, Peoples R China
[3] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[4] Nanyang Technol Univ, Singapore Membrane Technol Ctr, Nanyang Environm & Water Res Inst, Singapore 637141, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Lattice Boltzmann method; Multiple-relaxation-time; Convection-diffusion equation; Boundary scheme; Neumann condition; Robin condition; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; MODEL; SCHEME;
D O I
10.1016/j.compfluid.2018.04.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, the Dirichlet, Neumann and linear Robin conditions for the convection-diffusion equation (CDE) lattice Boltzmann (LB) method is investigated and a second-order boundary scheme is proposed for the D2Q9 multiple-relaxation-time (MRT) LB model. With the proposed scheme, consistent implementations are developed for the three kinds of macroscopic boundary constraints considered at both straight and curved boundaries. The second-order accuracy of the present boundary scheme is firstly demonstrated by the theoretical derivations and then confirmed by the numerical validations. Notably, the advantages of the present boundary scheme lie in its locality and consistency, i.e., no information from the neighboring fluid nodes is required in the practical treatments, and all three kinds of boundary conditions are directly implemented without degrading the Robin condition to the Dirichlet or Neumann condition. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:24 / 40
页数:17
相关论文
共 50 条
  • [21] Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes
    Chen, Qing
    Zhang, Xiaobing
    Zhang, Junfeng
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [22] Second-order curved interface treatments of the lattice Boltzmann method for convection-diffusion equations with conjugate interfacial conditions
    Hu, Ze-Xi
    Huang, Juntao
    Huang, Wei -Xi
    Cui, Gui-Xiang
    COMPUTERS & FLUIDS, 2017, 144 : 60 - 73
  • [23] Lattice-Boltzmann Simulations of the Convection-Diffusion Equation with Different Reactive Boundary Conditions
    Du, Rui
    Wang, Jincheng
    Sun, Dongke
    MATHEMATICS, 2020, 8 (01) : 1 - 12
  • [24] Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation
    Cartalade, Alain
    Younsi, Amina
    Neel, Marie-Christine
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 40 - 54
  • [25] Non-linear boundary conditions for the convection-diffusion equation in lattice Boltzmann framework
    Kashani, Elham
    Mohebbi, Ali
    Monfared, Amir Ehsan Feili
    Raoof, Amir
    CHEMICAL ENGINEERING SCIENCE, 2022, 247
  • [26] Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
    Liu, Qing
    He, Ya-Ling
    Li, Dong
    Li, Qing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 1334 - 1344
  • [27] Multiple-relaxation-time lattice Boltzmann model for compressible fluids
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    PHYSICS LETTERS A, 2011, 375 (21) : 2129 - 2139
  • [28] Lattice Boltzmann model for nonlinear convection-diffusion equations
    Shi, Baochang
    Guo, Zhaoli
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [29] A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
    Liu, Qing
    He, Ya-Ling
    Li, Qing
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 : 761 - 775
  • [30] On the Multiple-Relaxation-Time Micro-Flow Lattice Boltzmann Method for Complex Flows
    Suga, Kazuhiko
    Ito, Takahiko
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 75 (02): : 141 - 172