Consistent boundary conditions of the multiple-relaxation-time lattice Boltzmann method for convection-diffusion equations

被引:9
作者
Zhang, Liangqi [1 ]
Yang, Shiliang [1 ]
Zeng, Zhong [2 ,3 ]
Chew, Jia Wei [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Chongqing Univ, Coll Aerosp Engn, Dept Engn Mech, Chongqing 400044, Peoples R China
[3] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[4] Nanyang Technol Univ, Singapore Membrane Technol Ctr, Nanyang Environm & Water Res Inst, Singapore 637141, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Lattice Boltzmann method; Multiple-relaxation-time; Convection-diffusion equation; Boundary scheme; Neumann condition; Robin condition; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; MODEL; SCHEME;
D O I
10.1016/j.compfluid.2018.04.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, the Dirichlet, Neumann and linear Robin conditions for the convection-diffusion equation (CDE) lattice Boltzmann (LB) method is investigated and a second-order boundary scheme is proposed for the D2Q9 multiple-relaxation-time (MRT) LB model. With the proposed scheme, consistent implementations are developed for the three kinds of macroscopic boundary constraints considered at both straight and curved boundaries. The second-order accuracy of the present boundary scheme is firstly demonstrated by the theoretical derivations and then confirmed by the numerical validations. Notably, the advantages of the present boundary scheme lie in its locality and consistency, i.e., no information from the neighboring fluid nodes is required in the practical treatments, and all three kinds of boundary conditions are directly implemented without degrading the Robin condition to the Dirichlet or Neumann condition. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:24 / 40
页数:17
相关论文
共 41 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[3]   A novel lattice Boltzmann model for the Poisson equation [J].
Chai, Zhenhua ;
Shi, Baochang .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (10) :2050-2058
[4]   Lattice Boltzmann model for the convection-diffusion equation [J].
Chai, Zhenhua ;
Zhao, T. S. .
PHYSICAL REVIEW E, 2013, 87 (06)
[5]   A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications [J].
Chen, Li ;
Kang, Qinjun ;
Mu, Yutong ;
He, Ya-Ling ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 76 :210-236
[6]   Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes [J].
Chen, Qing ;
Zhang, Xiaobing ;
Zhang, Junfeng .
PHYSICAL REVIEW E, 2013, 88 (03)
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   Local second-order boundary methods for lattice Boltzmann models [J].
Ginzbourg, I ;
dHumieres, D .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) :927-971
[9]   Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations [J].
Ginzburg, I .
ADVANCES IN WATER RESOURCES, 2005, 28 (11) :1196-1216
[10]   Multireflection boundary conditions for lattice Boltzmann models -: art. no. 066614 [J].
Ginzburg, I ;
d'Humières, D .
PHYSICAL REVIEW E, 2003, 68 (06) :666141-666143