ON THE HYPERPLANE CONJECTURE FOR PERIODS OF CALABI-YAU HYPERSURFACES IN Pn

被引:2
作者
Lian, Bong H. [1 ]
Zhu, Minxian [2 ,3 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
HYPERGEOMETRIC-FUNCTIONS; COHOMOLOGY;
D O I
10.4310/jdg/1620272942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [HLY1], Hosono, Lian, and Yau gave a conjectural characterization of the set of solutions to certain Gelfand-Kapranov-Zelevinsky hypergeometric equations which are realized as periods of Calabi-Yau hypersurfaces in a Gorenstein Fano toric variety X. We prove this conjecture in the case where X is a complex projective space.
引用
收藏
页码:101 / 146
页数:46
相关论文
共 26 条
[1]   HYPERGEOMETRIC-FUNCTIONS AND RINGS GENERATED BY MONOMIALS [J].
ADOLPHSON, A .
DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) :269-290
[2]  
[Anonymous], 1992, J. Amer. Math. Soc., V5, P805
[3]  
Batyrev V.V., 1997, MIRROR SYMMETRY 2 AM, V1, P71
[4]  
Batyrev V.V., 1994, J. Alg. Geom., V3, P493
[5]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409
[6]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[7]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203
[8]  
BEILINSON AA, 1982, ASTERISQUE, P7
[9]  
Bloch S, 2014, J DIFFER GEOM, V97, P11
[10]   String cohomology of Calabi-Yau hypersurfaces via mirror symmetry [J].
Borisov, LA ;
Mavlyutov, AR .
ADVANCES IN MATHEMATICS, 2003, 180 (01) :355-390