Avoiding Higher Matrix Powers in the Solution of Linear Dynamical Systems

被引:1
作者
Natalini, Pierpaolo [1 ]
Ricci, Paolo Emilio [2 ]
机构
[1] Roma Tre Univ, Dept Math & Phys, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Int Telemat Univ UniNettuno, Corso Vittorio Emanuele 2 39, I-00186 Rome, Italy
来源
MODELING IN MATHEMATICS | 2017年 / 2卷
关键词
Matrix powers; Linear dynamical systems; Exponential matrix; Lucas polynomials of the second kind; GENERALIZED LUCAS POLYNOMIALS; CHEBYSHEV POLYNOMIALS; VARIABLES;
D O I
10.2991/978-94-6239-261-8_9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, using Lucas polynomials of the second kind, it is possible to write down explicitly the solution of linear dynamical systems - both in the discrete and continuous case - avoiding higher matrix powers. This improves the computational complexity of the algorithms usually described in literature.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 14 条