Continuity of pseudodifferential operators on mixed-norm Lebesgue spaces

被引:5
作者
Antonic, Nenad [1 ]
Ivec, Ivan [2 ]
Vojnovic, Ivana [3 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb, Croatia
[2] Univ Zagreb, Fac Met, Aleja Narodnih Heroja 3, Sisak, Croatia
[3] Univ Novi Sad, Dept Math & Informat, Fac Sci, Novi Sad, Serbia
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 190卷 / 04期
关键词
Mixed-norm Lebesgue spaces; Sobolev spaces; Pseudodifferential operators; Schur test; Compactness; LP;
D O I
10.1007/s00605-019-01318-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mixed-norm Lebesgue spaces found their place in the study of some questions in the theory of partial differential equations, as it can be seen from recent interest in continuity of certain classes of pseudodifferential operators on these spaces. We present a general framework for dealing with continuity of linear operators on these spaces. This allows us to prove the boundedness of a large class of pseudodifferential operators and also the boundedness of integral operators on mixed-norm Lebesgue spaces. In some cases, the generalisations to mixed-norm Sobolev spaces are obtained as well, together with applications to some interpolation and compactness results.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 26 条
  • [1] ADAMS R. A., 2003, SOBOLEV SPACES
  • [2] H-distributions with unbounded multipliers
    Aleksic, Jelena
    Pilipovic, Stevan
    Vojnovic, Ivana
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2018, 9 (03) : 615 - 641
  • [3] [Anonymous], 1945, Doklady Akademii Nauk SSSR
  • [4] [Anonymous], 1997, PARTIAL DIFFERENTIAL
  • [5] On the Hormander-Mihlin theorem for mixed-norm Lebesgue spaces
    Antonic, Nenad
    Ivec, Ivan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 176 - 199
  • [6] Ashino R., 2004, CUBO, V6, P91
  • [7] SPACES LP, WITH MIXED NORM
    BENEDEK, A
    PANZONE, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) : 301 - &
  • [8] Benedek AI, 1964, REV UN MAT ARGENT, V22, P3
  • [9] Bergh J., 1976, GRUNDLEHREN MATH WIS
  • [10] Besov O., 1978, Integral Representations of Functions and Embedding Theorems