Pythagoras numbers of orders in biquadratic fields

被引:7
作者
Krasensky, Jakub [1 ]
Raska, Martin [1 ]
Sgallova, Ester [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
关键词
Sum of squares; Pythagoras number; Biquadratic number field; Ring of integers; UNIVERSAL QUADRATIC-FORMS; SUMS; SQUARES;
D O I
10.1016/j.exmath.2022.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the Pythagoras number P(OK) of the ring of integers OK in a totally real biquadratic number field K. We show that the known upper bound 7 is attained in a large ./ and natural infinite family of such fields. In contrast, for almost all fields Q( 5, ./s) we prove P(OK) = 5. Further we show that 5 is a lower bound for all but seven fields K and 6 is a lower bound in an asymptotic sense.(c) 2022 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1181 / 1228
页数:48
相关论文
共 39 条
[1]   SUMS OF SQUARES IN ALGEBRAIC FUNCTION FIELDS OVER A COMPLETE DISCRETELY VALUED FIELD [J].
Becher, Karim Johannes ;
Grimm, David ;
Van Geel, Jan .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 267 (02) :257-276
[2]   The length and other invariants of a real field [J].
Becher, Karim Johannes ;
Leep, David B. .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :235-252
[3]   Sums of squares in function fields of hyperelliptic curves [J].
Becher, Karim Johannes ;
Van Geel, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (04) :829-844
[4]   Universal quadratic forms and indecomposables over biquadratic fields [J].
Cech, Martin ;
Lachman, Dominik ;
Svoboda, Josef ;
Tinkova, Magdalena ;
Zemkova, Kristysma .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) :540-555
[5]   HERMITE REDUCTION AND A WARING'S PROBLEM FOR INTEGRAL QUADRATIC FORMS OVER NUMBER FIELDS [J].
Chan, Wai Kiu ;
Icaza, Maria Ines .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (04) :2967-2985
[6]   Sums of squares in rings of integers with 2 inverted [J].
Collinet, Gael .
ACTA ARITHMETICA, 2016, 173 (04) :383-390
[7]  
Dzewas, 1960, MATH NACHR, V21, P233, DOI [10.1002/mana.19600210309, DOI 10.1002/MANA.19600210309]
[8]  
He ZL, 2022, Arxiv, DOI arXiv:2204.10468
[9]   Pythagoras numbers of fields [J].
Hoffmann, DW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (03) :839-848
[10]   The Pythagoras number and the u-invariant of Laurent series fields in several variables [J].
Hu, Yong .
JOURNAL OF ALGEBRA, 2015, 426 :243-258