Generalized rank-constrained matrix approximations

被引:61
作者
Friedland, Shmuel [1 ]
Torokhti, Anatoli
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ S Australia, Sch Math & Stat, Mawson Lakes, SA 5095, Australia
关键词
singular value decomposition (SVD); generalized rank-constrained matrix approximations; generalized inverse;
D O I
10.1137/06065551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give an explicit solution to the rank-constrained matrix approximation in Frobenius norm, which is a generalization of the classical approximation of an m x n matrix A by a matrix of, at most, rank k.
引用
收藏
页码:656 / 659
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 1996, MATRIX COMPUTATION
[2]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[3]  
ECKART C, 1936, APPROXIMATION ONE MA, V1, P211
[4]   Fast Monte-Carlo algorithms for finding low-rank approximations [J].
Frieze, A ;
Kannan, R ;
Vempala, S .
JOURNAL OF THE ACM, 2004, 51 (06) :1025-1041
[5]   Generalized Karhunen-Loeve transform [J].
Hua, YB ;
Liu, WQ .
IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (06) :141-142
[6]   A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition [J].
Kolda, TG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :762-767
[7]   Weighted low-rank approximation of general complex matrices and its application in the design of 2-D digital filters [J].
Lu, WS ;
Pei, SC ;
Wang, PH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (07) :650-655
[8]   Relative Karhunen-Loeve transform [J].
Yamashita, Y ;
Ogawa, H .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (02) :371-378